135 research outputs found

    Updating the Born rule

    Full text link
    Despite the tremendous empirical success of quantum theory there is still widespread disagreement about what it can tell us about the nature of the world. A central question is whether the theory is about our knowledge of reality, or a direct statement about reality itself. Regardless of their stance on this question, current interpretations of quantum theory regard the Born rule as fundamental and add an independent state-update (or "collapse") rule to describe how quantum states change upon measurement. In this paper we present an alternative perspective and derive a probability rule that subsumes both the Born rule and the collapse rule. We show that this more fundamental probability rule can provide a rigorous foundation for informational, or "knowledge-based", interpretations of quantum theory.Comment: 6+2 pages; 3 figure

    Communicating continuous quantum variables between different Lorentz frames

    Full text link
    We show how to communicate Heisenberg-limited continuous (quantum) variables between Alice and Bob in the case where they occupy two inertial reference frames that differ by an unknown Lorentz boost. There are two effects that need to be overcome: the Doppler shift and the absence of synchronized clocks. Furthermore, we show how Alice and Bob can share Doppler-invariant entanglement, and we demonstrate that the protocol is robust under photon loss.Comment: 4 pages, 1 figur

    Simulating quantum effects of cosmological expansion using a static ion trap

    Full text link
    We propose a new experimental testbed that uses ions in the collective ground state of a static trap for studying the analog of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analog gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analog of an expanding universe using trapped ions and enlarges the validity of the ion-trap analogy to a wide range of interesting cases.Comment: (v2) revisions based on referee comments, figure added for clarity; (v1) 17 pages, no figure

    Heuristic for estimation of multiqubit genuine multipartite entanglement

    Full text link
    For every N-qubit density matrix written in the computational basis, an associated "X-density matrix" can be obtained by vanishing all entries out of the main- and anti-diagonals. It is very simple to compute the genuine multipartite (GM) concurrence of this associated N-qubit X-state, which, moreover, lower bounds the GM-concurrence of the original (non-X) state. In this paper, we rely on these facts to introduce and benchmark a heuristic for estimating the GM-concurrence of an arbitrary multiqubit mixed state. By explicitly considering two classes of mixed states, we illustrate that our estimates are usually very close to the standard lower bound on the GM-concurrence, being significantly easier to compute. In addition, while evaluating the performance of our proposed heuristic, we provide the first characterization of GM-entanglement in the steady states of the driven Dicke model at zero temperature.Comment: 19 pages, 5 figure

    Characterizing GHZ Correlations in Nondegenerate Parametric Oscillation via Phase Measurements

    Get PDF
    We present a potential realization of the Greenberger, Horne and Zeilinger ALL or NOTHING contradiction of quantum mechanics with local realism using phase measurement techniques in a simple photon number triplet. Such a triplet could be generated using nondegenerate parametric oscillation
    corecore