42 research outputs found

    Molecular dynamics simulations reveal canonical conformations in different pMHC/TCR interactions

    Get PDF
    The major defense system against microbial pathogens in vertebrates is the adaptive immune response and represents an effective mechanism in cancer surveillance. T cells represent an essential component of this complex system. They can recognize myriads of antigens as short peptides (p) originated from the intracellular degradation of foreign proteins presented by major histocompatibility complex (MHC) proteins. The clonotypic T-cell antigen receptor (TCR) is specialized in recognizing pMHC and triggering T cells immune response. It is still unclear how TCR engagement to pMHC is translated into the intracellular signal that initiates T-cell immune response. Some work has suggested the possibility that pMHC binding induces in the TCR conformational changes transmitted to its companion CD3 subunits that govern signaling. The conformational changes would promote phosphorylation of the CD3 complex ζ chain that initiates signal propagation intracellularly. Here, we used all-atom molecular dynamics simulations (MDs) of 500 ns to analyze the conformational behavior of three TCRs (1G4, ILA1 and ILA1α1β1) interacting with the same MHC class I (HLA-A*02:01) bound to different peptides, and modelled in the presence of a lipid bilayer. Our data suggest a correlation between the conformations explored by the β-chain constant regions and the T-cell response experimentally determined. In particular, independently by the TCR type involved in the interaction, the TCR activation seems to be linked to a specific zone of the conformational space explored by the β-chain constant region. Moreover, TCR ligation restricts the conformational space the MHC class I groove

    2D Zernike polynomial expansion: finding the protein-protein binding regions

    Get PDF
    We present a method for efficiently and effectively assessing whether and where two proteins can interact with each other to form a complex. This is still largely an open problem, even for those relatively few cases where the 3D structure of both proteins is known. In fact, even if much of the information about the interaction is encoded in the chemical and geometric features of the structures, the set of possible contact patches and of their relative orientations are too large to be computationally affordable in a reasonable time, thus preventing the compilation of reliable interactome. Our method is able to rapidly and quantitatively measure the geometrical shape complementarity between interacting proteins, comparing their molecular iso-electron density surfaces expanding the surface patches in term of 2D Zernike polynomials. We first test the method against the real binding region of a large dataset of known protein complexes, reaching a success rate of 0.72. We then apply the method for the blind recognition of binding sites, identifying the real region of interaction in about 60% of the analyzed cases. Finally, we investigate how the efficiency in finding the right binding region depends on the surface roughness as a function of the expansion order

    Assessing the accuracy of contact and distance predictions in CASP14

    Get PDF
    We present the results of the assessment of the intramolecular residue-residue contact and distance predictions from groups participating in the 14th round of the CASP experiment. The performance of contact prediction methods was evaluated with the measures used in previous CASPs, while distance predictions were assessed based on a new protocol, which considers individual distance pairs as well as the whole predicted distance matrix, using a graph-based framework. The results of the evaluation indicate that predictions by the tFold framework, TripletRes and DeepPotential were the most accurate in both categories. With regards to progress in method performance, the results of the assessment in contact prediction did not reveal any discernible difference when compared to CASP13. Arguably, this could be due to CASP14 FM targets being more challenging than ever before.We present the results of the assessment of the intramolecular residue-residue contact and distance predictions from groups participating in the 14th round of the CASP experiment. The performance of contact prediction methods was evaluated with the measures used in previous CASPs, while distance predictions were assessed based on a new protocol, which considers individual distance pairs as well as the whole predicted distance matrix, using a graph-based framework. The results of the evaluation indicate that predictions by the tFold framework, TripletRes and DeepPotential were the most accurate in both categories. With regards to progress in method performance, the results of the assessment in contact prediction did not reveal any discernible difference when compared to CASP13. Arguably, this could be due to CASP14 FM targets being more challenging than ever before

    A novel strategy for molecular interfaces optimization: the case of ferritin-transferrin receptor interaction

    Get PDF
    Protein-protein interactions regulate almost all cellular functions and rely on a fine tune of surface amino acids properties involved on both molecular partners. The disruption of a molecular association can be caused even by a single residue mutation, often leading to a pathological modification of a biochemical pathway. Therefore the evaluation of the effects of amino acid substitutions on binding, and the ad hoc design of protein-protein interfaces, is one of the biggest challenges in computational biology. Here, we present a novel strategy for computational mutation and optimization of protein-protein interfaces. Modeling the interaction surface properties using the Zernike polynomials, we describe the shape and electrostatics of binding sites with an ordered set of descriptors, making possible the evaluation of complementarity between interacting surfaces. With a Monte Carlo approach, we obtain protein mutants with controlled molecular complementarities. Applying this strategy to the relevant case of the interaction between Ferritin and Transferrin Receptor, we obtain a set of Ferritin mutants with increased or decreased complementarity. The extensive molecular dynamics validation of the method results confirms its efficacy, showing that this strategy represents a very promising approach in designing correct molecular interfaces

    Probing the interaction interface of the GADD45β/MKK7 and MKK7/DTP3 complexes by chemical cross-linking mass spectrometry

    Get PDF
    GADD45β is selectively and constitutively expressed in Multiple Myeloma cells, and this expression correlates with an unfavourable clinical outcome. GADD45β physically interacts with the JNK kinase, MKK7, inhibiting its activity to enable the survival of cancer cells. DTP3 is a small peptide inhibitor of the GADD45β/MKK7 complex and is able to restore MKK7/JNK activation, thereby promoting selective cell death of GADD45β-overexpressing cancer cells. Enzymatic MS foot-printing and diazirine-based chemical cross-linking MS (CX-MS) strategies were applied to study the interactions between GADD45β and MKK7 kinase domain (MKK7_KD) and between DTP3 and MKK7_KD. Our data show that the binding between GADD45β and MKK7 largely occurs between GADD45β loop 2 (region 103–117) and the kinase enzymatic pocket. We also show that DTP3 interferes with this GADD45β/MKK7 interaction by contacting the MKK7 peptides, 113–136 and 259–274. Accordingly, an MKK7_KD Δ(101–136) variant lacking Trp135 did not produce a fluorescence quenching effect upon the binding of DTP3. The assessment of the interaction between GADD45β and MKK7 and the elucidation of the recognition surfaces between DTP3 and MKK7 significantly advance the understanding of the mechanism underlying the inhibition of the GADD45β/MKK7 interaction by DTP3 and pave the way to the design of small-molecule DTP3 analogues

    Quantitative description of surface complementarity of antibody-antigen interfaces

    No full text
    Antibodies have the remarkable ability to recognise their cognate antigens with extraordinary affinity and specificity. Discerning the rules that define antibody-antigen recognition is a fundamental step in the rational design and engineering of functional antibodies with desired properties. In this study we apply the 3D Zernike formalism to the analysis of the surface properties of the antibody complementary determining regions (CDRs). Our results show that shape and electrostatic 3DZD descriptors of the surface of the CDRs are predictive of antigen specificity, with classification accuracy of 81% and area under the receiver operating characteristic curve (AUC) of 0.85. Additionally, while in terms of surface size, solvent accessibility and amino acid composition, antibody epitopes are typically not distinguishable from non-epitope, solvent-exposed regions of the antigen, the 3DZD descriptors detect significantly higher surface complementarity to the paratope, and are able to predict correct paratope-epitope interaction with an AUC = 0.75

    Does blood type affect the COVID-19 infection pattern?

    No full text
    Among the many aspects that characterize the COVID-19 pandemic, two seem particularly challenging to understand: I) the great geographical differences in the degree of virus contagiousness and lethality that were found in the different phases of the epidemic progression, and, ii) the potential role of the infected people's blood type in both the virus infectivity and the progression of the disease. A recent hypothesis could shed some light on both aspects. Specifically, it has been proposed that, in the subject-to-subject transfer, SARSCoV- 2 conserves on its capsid the erythrocytes' antigens of the source subject. Thus these conserved antigens can potentially cause an immune reaction in a receiving subject that has previously acquired specific antibodies for the source subject antigens. This hypothesis implies a blood type-dependent infection rate. The strong geographical dependence of the blood type distribution could be, therefore, one of the factors at the origin of the observed heterogeneity in the epidemics spread. Here, we present an epidemiological deterministic model where the infection rules based on blood types are taken into account, and we compare our model outcomes with the exiting worldwide infection progression data. We found an overall good agreement, which strengthens the hypothesis that blood types do play a role in the COVID-19 infection

    Molecular dynamics simulations reveal canonical conformations in different pMHC/TCR interactions

    No full text
    The major defense system against microbial pathogens in vertebrates is the adaptive immune response and represents an effective mechanism in cancer surveillance. T cells represent an essential component of this complex system. They can recognize myriads of antigens as short peptides (p) originated from the intracellular degradation of foreign proteins presented by major histocompatibility complex (MHC) proteins. The clonotypic T-cell antigen receptor (TCR) is specialized in recognizing pMHC and triggering T cells immune response. It is still unclear how TCR engagement to pMHC is translated into the intracellular signal that initiates T-cell immune response. Some work has suggested the possibility that pMHC binding induces in the TCR conformational changes transmitted to its companion CD3 subunits that govern signaling. The conformational changes would promote phosphorylation of the CD3 complex ζ chain that initiates signal propagation intracellularly. Here, we used all-atom molecular dynamics simulations (MDs) of 500 ns to analyze the conformational behavior of three TCRs (1G4, ILA1 and ILA1α1β1) interacting with the same MHC class I (HLA-A*02:01) bound to different peptides, and modelled in the presence of a lipid bilayer. Our data suggest a correlation between the conformations explored by the β-chain constant regions and the T-cell response experimentally determined. In particular, independently by the TCR type involved in the interaction, the TCR activation seems to be linked to a specific zone of the conformational space explored by the β-chain constant region. Moreover, TCR ligation restricts the conformational space the MHC class I groove

    Characterizing hydropathy of amino acid side chain in a protein environment by investigating the structural changes of water molecules network

    No full text
    Assessing the hydropathy properties of molecules, like proteins and chemical compounds, has a crucial role in many fields of computational biology, such as drug design, biomolecular interaction, and folding prediction. Over the past decades, many descriptors were devised to evaluate the hydrophobicity of side chains. In this field, recently we likewise have developed a computational method, based on molecular dynamics data, for the investigation of the hydrophilicity and hydrophobicity features of the 20 natural amino acids, analyzing the changes occurring in the hydrogen bond network of water molecules surrounding each given compound. The local environment of each residue is complex and depends on the chemical nature of the side chain and the location in the protein. Here, we characterize the solvation properties of each amino acid side chain in the protein environment by considering its spatial reorganization in the protein local structure, so that the computational evaluation of differences in terms of hydropathy profiles in different structural and dynamical conditions can be brought to bear. A set of atomistic molecular dynamics simulations have been used to characterize the dynamic hydrogen bond network at the interface between protein and solvent, from which we map out the local hydrophobicity and hydrophilicity of amino acid residues

    Binding site identification of G protein-coupled receptors through a 3D Zernike polynomials-based method: application to C. elegans olfactory receptors

    No full text
    Studying the binding processes of G protein-coupled receptors (GPCRs) proteins is of particular interest both to better understand the molecular mechanisms that regulate the signaling between the extracellular and intracellular environment and for drug design purposes. In this study, we propose a new computational approach for the identification of the binding site for a specific ligand on a GPCR. The method is based on the Zernike polynomials and performs the ligand-GPCR association through a shape complementarity analysis of the local molecular surfaces. The method is parameter-free and it can distinguish, working on hundreds of experimentally GPCR-ligand complexes, binding pockets from randomly sampled regions on the receptor surface, obtaining an Area Under ROC curve of 0.77. Given its importance both as a model organism and in terms of applications, we thus investigated the olfactory receptors of the C. elegans, building a list of associations between 21 GPCRs belonging to its olfactory neurons and a set of possible ligands. Thus, we can not only carry out rapid and efficient screenings of drugs proposed for GPCRs, key targets in many pathologies, but also we laid the groundwork for computational mutagenesis processes, aimed at increasing or decreasing the binding affinity between ligands and receptors
    corecore