94 research outputs found

    Chronic exposure to Bisphenol A impairs progesterone receptor-mediated signaling in the uterus during early pregnancy

    Get PDF
    Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy

    Cyclic regulation of transcription factor C/EBP beta in human endometrium

    Get PDF
    Abstract Background The transcription factor CCAAT/enhancer-binding protein (C/EBP) beta is a critical mediator of murine endometrial function during embryo implantation. Our objective is to characterize changes in C/EBP beta mRNA abundance and protein localization over the normal human menstrual cycle. Methods Fifty normally cycling volunteers without reproductive disorders were randomized to undergo endometrial sampling on a specific cycle day, with secretory phase samples timed using urinary LH surge. Samples were assessed for relative C/EBP beta mRNA expression using quantitative real-time RT-PCR and for C/EBP beta protein localization using immunohistochemistry. The semiquantitative histologic scoring (HSCORE) system was used to compare staining intensity in each tissue compartment between each cycle phase. Results C/EBP beta mRNA expression by whole endometrium peaks in the late secretory phase and is significantly higher than that in the proliferative and mid-secretory phases. A marked increase in nuclear C/EBP beta protein immunostaining is seen in stromal cells beginning about cycle day 20, coincident with the start of endometrial receptivity. This increased staining continues for the remainder of the cycle. Conclusion In the normal human menstrual cycle, C/EBP beta mRNA and protein expression also change, with increased nuclear immunostaining in the mid-secretory phase, suggesting a possible role for C/EBP beta in human endometrial receptivity

    Characterization of molecular changes in endometrium associated with chronic use of progesterone receptor modulators: ulipristal acetate vs. mifepristone

    Get PDF
    Ulipristal acetate (UPA) is a selective progesterone receptor modulator (PRM), which is used as an emergency contraceptive in women. Recent studies demonstrated the efficacy of an UPA contraceptive vaginal ring (UPA-CVR) as a blocker of ovulation. However, the endometrium of women exposed to UPA over a 6-month period display glandular changes, termed PRM-associated endometrial changes (PAECs). We, therefore, investigated whether UPA-induced PAECs are associated with altered expression of the transcription factor heart- and neural crest derivatives-expressed protein 2 (HAND2) whose downregulation is observed in endometrial epithelial hyperplasia and cancer. Our results showed that while exposure to mifepristone, a well-known PRM, leads to suppression of endometrial HAND2 expression, long-term exposure to UPA-CVR did not cause downregulation of this marker. Further studies, using human primary endometrial stromal cells, confirmed that whereas mifepristone-mediated suppression of HAND2 elevated the levels of its downstream target fibroblast growth factor 18, UPA did not significantly alter the expression of this growth factor. A rationale for the differential regulation of HAND2 by these PRMs was provided by our observation that mifepristone-bound progesterone receptors turn over at a faster rate than those bound to UPA. Collectively, these results support the selective effects of different PRMs and indicate that chronic exposure to UPA does not alter the HAND2 pathway whose dysregulation is linked to complex atypical endometrial hyperplasia and cancer. The results from this study involving a limited number of clinical samples should pave the way for a larger study to determine the safety of UPA for long-term use

    Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development

    Get PDF
    Background: Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. Methods and Findings: Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. Conclusions: HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies.publishedVersio

    G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    Get PDF
    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis

    Chronic exposure to Bisphenol A impairs progesterone receptor-mediated signaling in the uterus during early pregnancy

    Get PDF
    Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In a recent publication in Endocrinology, we demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo implantation and decidua morphogenesis, two critical events for establishment and maintenance of early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised in response to BPA. This research highlight will provide an overview of our findings and discuss the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy

    Non-equilibrium solvation dynamics in water-DMSO binary mixture: Composition dependence of non-linear relaxation

    No full text
    Because of a larger number of intermolecular interactions and configurations available to them, aqueous binary mixtures exhibit a variety of dynamics that are not seen in pure liquids, often hard to understand or predict, and have attracted considerable interest recently. Among all such solutions, mixtures of water and dimethyl sulfoxide (DMSO) stand out for their unique role in chemistry and biology. The low DMSO concentration regime of the water-dimethyl sulfoxide (DMSO) mixture is relevant in wide ranging chemical and biological processes. Interestingly, this low concentration regime is known to display a string of yet unexplained anomalies. We probe these anomalies in atomistic simulations by studying (i) equilibrium solvation dynamics both in the ground and the excited states of the probe separately and (ii) the non-equilibrium solvation dynamics subsequent to excitation at time t = 0 and then following the solvation process. The latter needed a large number of simulations to obtain a reliable average. We carried out such studies across a large number of compositions of the water-DMSO mixture. We find that the usually employed linear response approximation breaks down at those concentrations where binary mixtures display other anomalies. The non-linearity is reflected in substantially different solvent responses in the ground and in the excited states of the solute probe indole and also in non-equilibrium solvation. The difference is maximum near 20%-35% of the DMSO concentration regime. Published by AIP Publishing

    Lack of CCAAT Enhancer Binding Protein Beta (C/EBPβ) in Uterine Epithelial Cells Impairs Estrogen-Induced DNA Replication, Induces DNA Damage Response Pathways, and Promotes Apoptosis▿

    No full text
    Female mice lacking the transcription factor C/EBPβ are infertile and display markedly reduced estrogen (E)-induced proliferation of the uterine epithelial lining during the reproductive cycle. The present study showed that E-stimulated luminal epithelial cells of a C/EBPβ-null uterus are able to proceed through the G1 phase of the cell cycle before getting arrested in the S phase. This cell cycle arrest was accompanied by markedly reduced levels of expression of E2F3, an E2F family member, and a lack of nuclear localization of cyclin E, a critical regulator of cdk2. An increased nuclear accumulation of p27, an inhibitor of the cyclin E-cdk2 complex, was also observed for the mutant epithelium. Gene expression profiling of C/EBPβ-null uterine epithelial cells revealed that the blockade of E-induced DNA replication triggers the activation of several well-known components of the DNA damage response pathway, such as ATM, ATR, histone H2AX, checkpoint kinase 1, and tumor suppressor p53. The activation of p53 by ATM/ATR kinase led to increased levels of expression of p21, an inhibitor of G1-S-phase progression, which helps maintain cell cycle arrest. Additionally, p53-dependent mechanisms contributed to an increased apoptosis of replication-defective cells in the C/EBPβ-null epithelium. C/EBPβ, therefore, is an essential mediator of E-induced growth and survival of uterine epithelial cells of cycling mice
    corecore