34 research outputs found

    Formulation development of a carrageenan based delivery system for buccal drug delivery using ibuprofen as a model drug

    Get PDF
    Solvent cast films are used as oral strips with potential to adhere to the mucosal surface, hydrate and deliver drugs across the buccal membrane. The objective of this study was the formulation development of bioadhesive films with optimum drug loading for buccal delivery. Films prepared from κ-carrageenan, poloxamer and polyethylene glycol or glycerol, were loaded with ibuprofen as a model water insoluble drug. The films were characterized using texture analysis (TA), hot stage microscopy (HSM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), x-ray powder diffraction (XRPD), high performance liquid chromatography (HPLC) and in vitro drug dissolution. Optimized films were obtained from aqueous gels containing 2.5% w/w κ-carrageenan 911, 4% w/w poloxamer 407 and polyethylene glycol (PEG) 600 [5.5% w/w (non-drug loaded) and 6.5% w/w (drug loaded)]. A maximum of 0.8% w/w ibuprofen could be incorporated into the gels to obtain films with optimum characteristics. Texture analysis confirmed that optimum film flexibility was achieved from 5.5% w/w and 6.5% (w/w) of PEG 600 for blank films and ibuprofen loaded films respectively. TGA showed residual water content of the films as approximately 5%. DSC revealed a Tg for ibuprofen at −53.87°C, a unified Tm for PEG 600/poloxamer mixture at 32.74°C and the existence of ibuprofen in amorphous form, and confirmed by XRPD. Drug dissolution at a pH simulating that of saliva showed that amorphous ibuprofen was released from the films at a faster rate than the pure crystalline drug. The results show successful design of a carrageenan and poloxamer based drug delivery system with potential for buccal drug delivery and showed the conversion of crystalline ibuprofen to the amorphous form during film formation

    An Overview of Chitosan-Xanthan Gum Matrices as Controlled Release Drug Carriers

    Get PDF
    Naturally occurring polysaccharides and/or their chemically modified derivatives have been widely investigated in relation to their use as components of controlled release systems for drug delivery. The aforementioned is due, in part, to their distinct properties such as abundant availability and biocompatibility as well as environmental and economic advantages. Chitosan (CS) and xanthan gum (XG) based matrices have received growing scientific/pharmaceutical interest as oral controlled release drug carriers. Herein, recent advances spanning the last two decades in CS-XG based drug delivery systems are reviewed with the emphasis being on oral tablet formulations, due to their versatility as pharmaceutical dosage forms. The mechanism of interaction between CS and XG, by means of computational and experimental approaches, is scrutinized. Results obtained from the literature establish the possibility of fabricating a controlled release drug delivery system based on CS and XG matrices. This can be achieved by monitoring and manipulating the physiochemical properties of the two polymers as well as the experimental variables affecting their drug retardation efficiency, without the need to employ special equipment or sophisticated experimental techniques/methodologies

    Effect of protonation state and N-acetylation of chitosan on its interaction with xanthan gum: a molecular dynamics simulation study

    Get PDF
    Hydrophilic matrices composed of chitosan (CS) and xanthan gum (XG) complexes are of pharmaceutical interest in relation to drug delivery due to their ability to control the release of active ingredients. Molecular dynamics simulations (MDs) have been performed in order to obtain information pertaining to the effect of the state of protonation and degree of N-acetylation (DA) on the molecular conformation of chitosan and its ability to interact with xanthan gum in aqueous solutions. The conformational flexibility of CS was found to be highly dependent on its state of protonation. Upon complexation with XG, a substantial restriction in free rotation around the glycosidic bond was noticed in protonated CS dimers regardless of their DA, whereas deprotonated molecules preserved their free mobility. Calculated values for the free energy of binding between CS and XG revealed the dominant contribution of electrostatic forces on the formation of complexes and that the most stable complexes were formed when CS was at least half-protonated and the DA was ≤50%. The results obtained provide an insight into the main factors governing the interaction between CS and XG, such that they can be manipulated accordingly to produce complexes with the desired controlled-release effect

    A direct compression matrix made from Xanthan gum and low molecular weight chitosan designed to improve compressibility in controlled release tablets

    Get PDF
    The subject of our research is the optimization of direct compression (DC), controlled release drug matrices comprising chitosan/xanthan gum. The foregoing is considered from two main perspectives; the use of low molecular weight chitosan (LCS) with xanthan gum (XG) and the determination of important attributes for direct compression of the mixtures of the two polymers. Powder flow, deformation behaviour, and work of compression parameters were used to characterize powder and tableting properties. Compression pressure and LCS content within the matrix were investigated for their influence on the crushing strength of the tablets produced. Response surface methodology (RSM) was applied to determine the optimum parameters required for DC of the matrices investigated. Results confirm the positive contribution of LCS in enhancing powder compressibility and crushing strength of the resultant compacts. Compactibility of the XG/LCS mixtures was found to be more sensitive to applied compression pressure than LCS content. LCS can be added at concentrations as low as 15% w/w to achieve hard compacts, as indicated by the RSM results. The introduction of the plasticity factor, using LCS, to the fragmenting material XG was the main reason for the high volume reduction and reduced porosity of the polymer mixture. Combinations of XG with other commonly utilized polymers in controlled release studies such as glucosamine, hydroxypropyl methylcellulose (HPMC), Na alginate (ALG), guar gum, lactose and high molecular weight (HMW) chitosan were also used; all the foregoing polymers failed to reduce the matrix porosity beyond a certain compression pressure. Application of the LCS/XG mixture, at its optimum composition, for the controlled release of two model drugs (metoprolol succinate and dyphylline) was examined. The XG/LCS matrix at 15% w/w LCS content was found to control the release of metoprolol succinate and dyphylline. The former preparation confirmed the strong influence of compression pressure on changing the drug release profile. The latter preparation showed the ability of XG/LCS to extend the drug release at a fixed rate for 12 h of dissolution time after which the release became slightly slower

    Curcumin and diclofenac therapeutic efficacy enhancement applying transdermal hydrogel polymer films, based on carrageenan, alginate and poloxamer

    Get PDF
    Films based on carrageenan, alginate and poloxamer 407 have been formulated with the main aim to apply prepared formulations in wound healing process. The formulated films were loaded with diclofenac, an anti-inflammatory drug, as well as diclofenac and curcumin, as multipurpose drug, in order to enhance encapsulation and achieve controlled release of these low bioavailable compounds. The obtained data demonstrated improved drugs bioavailability (encapsulation efficiency higher than 90%), with achieved high, cumulative in vitro release percentages (90.10% for diclofenac; 89.85% for curcumin and 95.61% for diclofenac in mixture-incorporated films).. The results obtained using theoretical models suggested that curcumin establish stronger, primarily dispersion interactions with carrier, in comparison with diclofenac. Curcumin and diclofenac-loaded films showed a great antibacterial activity against Gram-positive bacteria strains (Bacillus subtilis and Staphylococcus aureus, inhibition zone 16.67 mm and 13.67 mm, respectively), and in vitro and in vivo studies indicated that curcumin- and diclofenac-incorporated polymer films have a great tendency, as a new transdermal dressing, to heal wounds, because diclofenac can target the inflammatory phase and reduce pain, whereas curcumin can enhance and promote wound healing process
    corecore