3 research outputs found

    Carbon-carbon bond formation via rhodium-catalysed C-S activation processes

    No full text
    In the following thesis, new methodologies towards harnessing C-S activation processes are documented. These methods utilise rhodium catalysis and are focused on the activation of aryl methyl sulfides. Chapter 1 provides an overview of the development of metal-catalysed C-S activation chemistry, with a focus on the catalytic systems, reagents and starting materials used to facilitate various C-C bond forming transformations. Chapter 2 describes a novel rhodium-catalysed cross-coupling reaction of aryl and alkyl terminal alkynes with simple aryl sulfides. This resulted in a Sonogashira-type transformation which exhibited orthogonality with traditional palladium catalysed Sonogashira chemistry. Chapter 3 documents a new catalytic system which allowed for the practical and efficient alkyne carbothiolation reactions of ketone-baring methyl sulfides. The carbothiolation products can be conveniently utilised in a one-pot three-component reaction to form highly substituted isoquinolines. Chapter 4 discusses the potential for future work. Chapter 5 presents the experimental data

    Activating Group Recycling in Action: A Rhodium-Catalyzed Carbothiolation Route to Substituted Isoquinolines

    No full text
    A new rhodium(I) catalyst allows practical and efficient alkyne carbothiolation reactions to be achieved on synthetically useful ketone-bearing aryl methyl sulfides. The carbothiolation adducts, featuring a ‘recycled methyl sulfide’ activating group, are convenient precursors to highly substituted isoquinolines
    corecore