4 research outputs found

    Gelatin Manufacturing Process and Product

    Get PDF
    The present invention overcomes the deficiencies of the prior art by providing a process for manufacturing gelatin including cleaning a fowl-based source of collagen; subjecting the fowl-based source of collagen to at least one water extraction to extract gelatin from the collagen source; and separating the gelatin from any resulting by-products, wherein the process does not require an initial acid or lime pretreatment step. The present invention also includes a product made from this process

    Gelatin Manufacturing Process and Product

    Get PDF
    The present invention overcomes the deficiencies of the prior art by providing a process for manufacturing gelatin including cleaning a fowl-based source of collagen; subjecting the fowl-based source of collagen to at least one water extraction to extract gelatin from the collagen source; and separating the gelatin from any resulting by-products, wherein the process does not require an initial acid or lime pretreatment step. The present invention also includes a product made from this process

    Synthesis and Characterization of Starch Acetates with High Substitution

    Get PDF
    Acetylation of high-amylose (70%) maize starch to high degree of substitution (DS) was studied by reacting starch with acetic anhydride using 50% aqueous NaOH as the catalyst. DS increased with increasing reaction times and increasing ratios of acetic anhydride to starch. Reaction efficiency (RE) increased with longer reaction times and decreased with increases in the ratios of acetic anhydride to starch for extended reaction times. Increasing the amount of NaOH increased both DS and RE. A series of starch acetates with DS values of 0.57-2.23 were prepared and their crystalline structures, chemical structures, thermal stability, and morphological properties were investigated. After acetylation, and as DS increased form 0.57 to 2.23, the crystalline structures of starch steadily disappeared. The carbonyl group’s peak at 1,740 cm-1 appeared in the FTIR spectra. The intensity of this peak increased with a decrease in the peak intensity of the hydroxyl groups at 3,000-3,600 cm-1, indicating that the hydroxyl groups on starch were replaced by the acetyl groups. Thermal stability of starch acetates increased. The smooth surface of the starch granules became rough with acetylation. Further acetylation led to the loss of the starch granulates and the formation of beehive- and fibrous-like structures
    corecore