57 research outputs found
Role of Biofilm in Rainwater Tank
In order to establish the role of biofilm in rainwater tank, it was investigated the phylogenetic distribution of the bacteria present in an operating rainwater tank. Most of the bacteria were closely related to fresh water, soil, and biofilm bacteria found in natural environments. The high proportion of proteobacteria indicates the generally clean oligotrophic nature of the tank water. To better understand the environmental conditions in rainwater tanks and the development of biofilms therein, the changes in biofilm cells and the bacterial community were investigated during biofilm development. We confirmed that the biofilm development process takes place in three stages: an initial stage characterized by the colonization of different populations, an intermediate stage characterized by a limited number of dominant populations utilizing similar resources, and a late/mature stage characterized by mature biofilms of a complex spatial structure. It was investigated microbial behaviour after inoculation of the bacterium, Pseudomonas aeruginosa, in pilot and full-scale rainwater tanks with different surface-to-volume (S/V) ratios. Ninety-nine percentage of the inoculated P. aeruginosa had been removed from the water phase. The faster removal rate in pilot and full-scale tank was due to its higher S/V ratio. From the results, several recommendations for tank design and management were suggested
Sexual Maturation, Attitudes towards Sexual Maturity, and Body Esteem in Elementary-School Children
PURPOSE: The purpose of this study is to evaluate sexual maturation, attitudes toward sexual maturity, and body esteem in the sexual development of Korean elementary-school boys and girls.
METHODS: A descriptive cross-sectional study was conducted with 399 fifth and sixth graders (192 boys and 207 girls). The data were analysed with a χ2 test, t-test, and Pearson correlation coefficients.
RESULTS: Among the 207 girls, 70.5% had pubic hair growth, 68.1% had breast development, and 56.0% had a menstrual period. In boys, 59.4% of the 192 subjects experienced the development of external genitalia and 52.6% had pubic hair growth. Sexual maturation was related to grade (boys, t=7.07, p=.008; girls, t=12.76, p < .001), age (t=−2.20, p=.030; t=−4.11, p < .001), height (t=−5.16, p < .001; t=−7.52, p < .001), and weight (t=−2.89, p=.004; t=−5.19, p < .001) in both boys and girls. Girls were more likely to have sexual maturity than boys (χ2=22.29, p < .001). Boys showed more positive attitudes toward sexual maturity (t=2.10, p=.036) and higher body esteem (t=2.12, p=.035) than girls.
CONCLUSION: This study shows that sexual maturation, attitude toward sexual maturity, and body esteem in sexual development differ between boys and girls. The findings indicate that it is necessary to develop a tailored sex-education program according to the sex of elementary-school children
Analyzing evolution of variability in a software product line: from contexts and requirements to features
In the long run, features of a software product line (SPL) evolve with respect to changes in stakeholder requirements and system contexts. Neither domain engineering nor requirements engineering handles such co-evolution of requirements and contexts explicitly, making it especially hard to reason about the impact of co-changes in complex scenarios. In this paper, we propose a problem-oriented and value-based analysis method for variability evolution analysis. The method takes into account both kinds of changes (requirements and contexts) during the life of an evolving software product line. The proposed method extends the core requirements engineering ontology with the notions to represent variability-intensive problem decomposition and evolution. On the basis of problem-orientation, the analysis method identifies candidate changes, detects influenced features, and evaluates their contributions to the value of the SPL. The process of applying the analysis method is illustrated using a concrete case study of an evolving enterprise software system, which has confirmed that tracing back to requirements and contextual changes is an effective way to understand the evolution of variability in the software product line
Early-Life Farm Exposures and Eczema Among Adults in the Agricultural Lung Health Study
Background Several studies conducted in Europe have suggested a protective association between early-life farming exposure and childhood eczema or atopic dermatitis; however, few studies have examined associations in adults. Objectives We investigated associations between early-life exposures and eczema among 3217 adult farmers and farm spouses (mean age, 62.8 years) in a case–control study nested within an US agricultural cohort. Methods We used sampling-weighted logistic regression to estimate odds ratios and 95% confidence intervals for associations between early-life exposures and self-reported doctor-diagnosed eczema (273 cases) and polytomous logistic regression to estimate odds ratios (95% confidence intervals) for a 4-level outcome combining information on eczema and atopy (specific IgE ≥ 0.35). Additionally, we explored genetic and gene–environment associations with eczema. Results Although early-life farming exposures were not associated with eczema overall, several early-life exposures were associated with a reduced risk of having both eczema and atopy. Notably, results suggest stronger protective associations among individuals with both eczema and atopy than among those with either alone. For example, odds ratios (95% confidence intervals) for having a mother who did farm work while pregnant were 1.01 (0.60, 1.69) for eczema alone and 0.80 (0.65, 0.99) for atopy alone, but 0.54 (0.33, 0.80) for having both. A genetic risk score based on previously identified atopic dermatitis variants was strongly positively associated with eczema, and interaction testing suggested protective effects of several early-life farming exposures only in individuals at lower genetic risk. Conclusions In utero and childhood farming exposures are associated with decreased odds of having eczema with atopy in adults
House dust metagenome and pulmonary function in a US farming population.
BACKGROUND: Chronic exposure to microorganisms inside homes can impact respiratory health. Few studies have used advanced sequencing methods to examine adult respiratory outcomes, especially continuous measures. We aimed to identify metagenomic profiles in house dust related to the quantitative traits of pulmonary function and airway inflammation in adults. Microbial communities, 1264 species (389 genera), in vacuumed bedroom dust from 779 homes in a US cohort were characterized by whole metagenome shotgun sequencing. We examined two overall microbial diversity measures: richness (the number of individual microbial species) and Shannon index (reflecting both richness and relative abundance). To identify specific differentially abundant genera, we applied the Lasso estimator with high-dimensional inference methods, a novel framework for analyzing microbiome data in relation to continuous traits after accounting for all taxa examined together. RESULTS: Pulmonary function measures (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio) were not associated with overall dust microbial diversity. However, many individual microbial genera were differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to FEV1, FVC, or FEV1/FVC. Similarly, fractional exhaled nitric oxide (FeNO), a marker of airway inflammation, was unrelated to overall microbial diversity but associated with differential abundance for many individual genera. Several genera, including Limosilactobacillus, were associated with a pulmonary function measure and FeNO, while others, including Moraxella to FEV1/FVC and Stenotrophomonas to FeNO, were associated with a single trait. CONCLUSIONS: Using state-of-the-art metagenomic sequencing, we identified specific microorganisms in indoor dust related to pulmonary function and airway inflammation. Some were previously associated with respiratory conditions; others were novel, suggesting specific environmental microbial components contribute to various respiratory outcomes. The methods used are applicable to studying microbiome in relation to other continuous outcomes. Video Abstract
Plasma Protein Signatures of Adult Asthma
Background: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma.
Methods: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)).
Results: Meta-analysis of 4860 proteins identified 115 significantly (FDR\u3c0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR\u3c0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis.
Conclusion: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management
Phylogenetic Analysis of Cucurbit Chlorotic Yellows Virus from Melon in 2020 in Chungbuk, Korea
Cucurbit chlorotic yellows virus (CCYV) is a plant virus that causes damage to cucurbit crops such as watermelon and cucumber, and is transmitted by an insect vector known as the whitefly. Since CCYV was first detected on cucumber in Chungbuk in 2018, it has been reported in other areas including Gyeongsang in Korea. In 2020, we performed field surveys of yellowing diseases in the greenhouses growing melon and watermelon in Chungbuk (Jincheon and Eumseong). Reverse transcription-polymerase chain reaction analysis of 79 collected samples including melon, watermelon, and weeds resulted in detection of CCYV in 4 samples: Three samples were singly infected with CCYV and one samples was mixed infected with CCYV, Cucurbit aphid borne yellows virus, and Watermelon mosaic virus. The complete genome sequences of the four collected CCYV melon isolates (ES 1–ES 4) were determined and genetically compared with those of previously reported CCYV isolates retrieved from GenBank. Phylogenetic analyses of RNA 1 and 2 sequences revealed that four ES isolates were clustered in one group and closely related to the CCYV isolates from China. The analysis also revealed very low genetic diversity among the CCYV ES isolates. In general, CCYV isolates showed little genetic diversity, regardless of host or geographic origins. CCYV has the potential to pose a serious threat to melon, watermelon, and cucumber production in Korea. Further studies are needed to examine the pathogenicity and transmissibility of CCYV in weeds and other cucurbits including watermelon
Epigenome-Wide DNA Methylation and Pesticide Use in the Agricultural Lung Health Study
Using family-wise error rate (p<9×10-8) or false-discovery rate (FDR<0.05), we identified 162 differentially methylated CpGs across 8 of 9 currently marketed active ingredients (acetochlor, atrazine, dicamba, glyphosate, malathion, metolachlor, mesotrione, and picloram) and one banned organochlorine (heptachlor). Differentially methylated CpGs were unique to each active ingredient, and a dose-response relationship with lifetime days of use was observed for most. Significant CpGs were enriched for transcription motifs and 28% of CpGs were associated with whole blood cis-gene expression, supporting functional effects of findings. We corroborated a previously reported association between dichlorodiphenyltrichloroethane (banned in the United States in 1972) and epigenetic age acceleration
Opioid medication use and blood DNA methylation:epigenome-wide association meta-analysis
Aim: To identify differential methylation related to prescribed opioid use. Methods: This study examined whether blood DNA methylation, measured using Illumina arrays, differs by recent opioid medication use in four population-based cohorts. We meta-analyzed results (282 users; 10,560 nonusers) using inverse-variance weighting. Results: Differential methylation (false discovery rate \u3c0.05) was observed at six CpGs annotated to the following genes: KIAA0226, CPLX2, TDRP, RNF38, TTC23 and GPR179. Integrative epigenomic analyses linked implicated loci to regulatory elements in blood and/or brain. Additionally, 74 CpGs were differentially methylated in males or females. Methylation at significant CpGs correlated with gene expression in blood and/or brain. Conclusion: This study identified DNA methylation related to opioid medication use in general populations. The results could inform the development of blood methylation biomarkers of opioid use
Association analysis between an epigenetic risk score and blood pressure
BACKGROUND:Â Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases.RESULTS:Â We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day ( p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP ( p = 4.64E-07), 0.68 mm Hg higher DBP (p = 0.006), and an odds ratio of 1.78 for HTN ( p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 ( p = 0.002) and 0.50 ( p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. CONCLUSIONS:Â Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.</p
- …