2,119 research outputs found

    Optimal transport for a novel event description at hadron colliders

    Get PDF
    We propose a novel strategy for disentangling proton collisions at hadron colliders such as the LHC that considerably improves over the current state of the art. Employing a metric inspired by optimal transport problems as the cost function of a graph neural network, our algorithm is able to compare two particle collections with different noise levels and learns to flag particles originating from the main interaction amidst products from up to 200 simultaneous pileup collisions. We thereby sidestep the critical task of obtaining a ground truth by labeling particles and avoid arduous human annotation in favor of labels derived in situ through a self-supervised process. We demonstrate how our approach—which, unlike competing algorithms, is trivial to implement—improves the resolution in key objects used in precision measurements and searches alike and present large sensitivity gains in searching for exotic Higgs boson decays at the High-Luminosity LHC

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore