52 research outputs found

    Tests and final integration of the ATLAS semiconductor tracker

    Get PDF
    The Silicon Tracker (SCT) is part of the Inner Detector at the ATLAS experiment at CERN. Its basic building blocks are 5 different types of silicon strip modules. In total more than 15000 p-on-n single-sided silicon strip sensors of an area of about 61 m2 were used to produce 4088 SCT modules. An overall module production yield of 92% could be achieved, where the silicon modules comply with the tight electrical, thermal and mechanical specifications. The macro-assembly of 2112 barrel modules to the four barrel support cylinders was successfully carried out. The nine disks of one endcap are fully populated with 988 modules, and for the second endcap more than 50% of the modules are already mounted. Test results operating complete barrels will be presented as well as a description of the test setup. The different integration steps of the SCT with the surrounding Transition Radiation Tracker (TRT) will be explained. The installation of SCT and TRT into the ATLAS pit will happen during 2006

    Noiseless, kilohertz-frame-rate, imaging detector based on micro-channel plates readout with the Medipix2 CMOS pixel chip

    Get PDF
    A new hybrid imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors. The detector consists of proximity focused microchannel plates (MCPs) read out by pixelated CMOS application specific integrated circuit (ASIC) chips developed at CERN ("Medipix2"). Each Medipix2 pixel has an amplifier, lower and upper charge discriminators, and a 14-bit chounter. The 256x256 array can be read out noiselessly (photon counting) in 286 us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. The readout can be electronically shuttered down to a terporal window of a few microseconds with an accuracy of 10 ns. Good quantum efficiencies can be achieved from the x-ray (open faced with opaque photocathodes) to the optical (sealed tube with multialkali or GaAs photocathode)

    Photon counting arrays for AO wavefront sensors

    Get PDF
    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at fluences of 60 photons or less, though the specific number is dependent on seeing conditions and the centroid algorithm used. We then present the status of a 256x256 noiseless MCP/Medipix2 hybrid detector being developed for AO

    X-ray imaging using single photon processing with semiconductor pixel detectors

    Get PDF
    More than 10 years experience with semiconductor pixel detectors for vertex detection in high energy physics experiments together with the steady progress in CMOS technology opened the way for the development of single photon processing pixel detectors for various applications including medical X-ray imaging. The state of the art of such pixel devices consists of pixel dimensions as small as 55x55 um2, electronic noise per pixel <100 e- rms, signal-to-noise discrimination levels around 1000 e- with a spread <50 e- and a dynamic range up to 32 bits per pixel. Moreover, the high granularity of hybrid pixel detectors makes it possible to probe inhomogeneities of the attached semiconductor sensor

    A high resolution, high frame rate detector based on a microchannel plate read out with the Medipix2 counting CMOS pixel chip.

    Get PDF
    The future of ground-based optical astronomy lies with advancements in adaptive optics (AO) to overcome the limitations that the atmosphere places on high resolution imaging. A key technology for AO systems on future very large telescopes are the wavefront sensors (WFS) which detect the optical phase error and send corrections to deformable mirrors. Telescopes with >30 m diameters will require WFS detectors that have large pixel formats (512x512), low noise (<3 e-/pixel) and very high frame rates (~1 kHz). These requirements have led to the idea of a bare CMOS active pixel device (the Medipix2 chip) functioning in counting mode as an anode with noiseless readout for a microchannel plate (MCP) detector and at 1 kHz continuous frame rate. First measurement results obtained with this novel detector are presented both for UV photons and beta particles

    The detector control system for the ATLAS semiconductor tracker assembly phase

    Get PDF
    The ATLAS Semiconductor Tracker (SCT) consists of 4088 silicon microstrip modules, with a total of 6.3 million readout channels. These are arranged into 4 concentric barrel layers and 2 endcaps of 9 disks each. The coherent and safe operation of the SCT during commissioning and subsequent operation is an essential task of the Detector Control System (DCS). The main building blocks of the SCT DCS, the cooling system, the power supplies and the environmental system, are described. First results from DCS testing are presented

    A noiseless kilohertz frame rate imaging detector based on microchannel plates read out with the Medipix2 CMOS pixel chip

    Get PDF
    A new hybrid optical imaging detector is described that is being developed for the next generation adaptive optics (AO) wavefront sensors (WFS) for ground-based telescopes. The detector consists of a photocathode and proximity focused microchannel plates (MCPs) read out by the Medipix2 CMOS pixel ASIC. Each pixel of the Medipix2 device measures 55x55 um2 and comprises pre-amplifier, a window discriminator and a 14-bit counter. The 256x256 Medipix2 array can be read out noiselessly in 287 us. The readout can be electronically shuttered down to a temporal window of a few us. The Medipix2 is buttable on 3 sides to produce 512x(n*256) pixel devices. Measurements with ultraviolet light yield a spatial resolution of the detector at the Nyquist limit. Sub-pixel resolution can be achieved using centroiding algorithms. For the AO application, very high continuous frame rates of the order of 1 kHz are required for a matrix of 512x512 pixels. The design concepts of a parallel readout board are presented that will allow this fast data throughput. The development status of the optical WFS tube is also explained

    Slovak Teachers Programme 04/2007

    No full text

    Emittance Measurements For Future LHC Beams Using The PS Booster Measurement Line

    No full text
    The CERN PS Booster measurement line contains three pairs of SEM grids separated by drift space that measures the beam size in both planes. The combined analysis of these grids allows calculating a value for the transverse beam emittances. The precision of such a measurement depends on the ratio of RMS beam size and wire spacing. Within the LIU-PSB upgrade the extraction kinetic energy of the PSB will be increased from the current 1.4 GeV to 2.0 GeV. This will result in smaller transverse beam sizes for some of the future beams. The present layout of the transverse emittance measurement line is reviewed to verify if it will satisfy future requirements

    New Shaving Scheme for Low-Intensity Beams in the CERN PS Booster and Feasibility at 160 MeV

    No full text
    The PS Booster is the first synchrotron in the CERN proton accelerator chain, serving all downstream machines. As part of the LHC Injector Upgrade Project, the PSB injection energy will increase from 50 MeV to 160 MeV and a new H⁻ charge-exchange injection scheme will be implemented. Beam losses are a concern due to the increased injection energy, and mitigation scenarios are under investigation. On the other hand it is desirable for low-intensity beams to have the possibility to precisely tailor sub-micron beam emittances through controlled scraping (transverse shaving process) towards a suitable aperture restriction. Challenges are the higher activation potential of the beam and the smaller transverse beam sizes around 160 MeV as compared to 63 MeV, at which the shaving is presently done. This paper describes the proposal of a new shaving scheme, more robust with respect to the steering errors and the choice of the working point, which localizes the scraping losses on the main PS Booster aperture restriction. The robustness of the new method, together with the results of simulations and measurements are discussed for the current (50 MeV) and future (160 MeV) situation
    • 

    corecore