28 research outputs found

    Metrics of rhamnogalacturonan I with β-(1→4)-linked galactan side chains and structural basis for its self-aggregation

    Get PDF
    © 2016 Elsevier LtdWithin the family of plant cell wall polysaccharides rhamnogalacturonans I are the most diverse and structurally complex members. In present study we characterize the 3-dimensional structures and dynamic features of the constituents of RG-I along MD trajectories. It is demonstrated that extended threefold helical structure of the rhamnogalacturonan linear backbone is the most energetically favorable motif. Branching helps to stabilize a conformer of the backbone twisted along 1→2 glycosidic linkage triggering the orientation of long side chains without altering the extended overall backbone chain conformation. Formation of anti-parallel pairing of the β-galactan side chains allows us to suggest a novel mode of non-covalent cross-linking in pectins. Studied structural elements are organized to report the first attempt to characterize 3D structure of RG-I focusing on the special case of flax tertiary cell wall and elucidate the structural basis underlying the formation of RG-I self-associates and functional role of RG-I in planta

    Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications

    Get PDF
    © 2017 Elsevier LtdThe article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I. Removal of half of galactan chains from RG-I leads to loss of gelling capability pointing out on their leading role in this process. Rising of intensity of the bands attributed to galactose and glycosidic linkages in RG-I gel comparing to solution where this polymer exists as molecule associate indicates that the spatial organization of galactans in gel is changed. A model of the RG-I gelation is proposed: being destabilized at volumetric microwave heating RG-I associates are repacked forming network where RG-I molecules are entangled by galactan chains

    Pathogen-induced conditioning of the primary xylem vessels – a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum

    Get PDF
    © 2016 German Botanical Society and The Royal Botanical Society of the NetherlandsRepresentatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant–Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific ‘multicellular’ structures – bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host–pathogen integration, since the formation of these structures requires the action of both partners

    Pectobacterium atrosepticum exopolysaccharides: Identification, molecular structure, formation under stress and in planta conditions

    Get PDF
    © The Author 2017. Published by Oxford University Press. All rights reserved. In the present study, we identified exopolysaccharides of the harmful phytopathogenic bacterium Pectobacterium atrosepticum SCRI1043 and characterized the molecular structure of these polymers. The synthesis of the target polysaccharides was shown to be induced under starvation conditions. Moreover, intensive accumulation of exopolysaccharides occurred during the colonization by bacteria of the xylem vessels of infected plants, where microorganisms formed specific 3D "multicellular" structures-bacterial emboli. Thus, the identified polymers are likely to be involved in the adaptation and virulence of bacteria of Pectobacterium genus

    Metrics of rhamnogalacturonan I with β-(1→4)-linked galactan side chains and structural basis for its self-aggregation

    No full text
    © 2016 Elsevier LtdWithin the family of plant cell wall polysaccharides rhamnogalacturonans I are the most diverse and structurally complex members. In present study we characterize the 3-dimensional structures and dynamic features of the constituents of RG-I along MD trajectories. It is demonstrated that extended threefold helical structure of the rhamnogalacturonan linear backbone is the most energetically favorable motif. Branching helps to stabilize a conformer of the backbone twisted along 1→2 glycosidic linkage triggering the orientation of long side chains without altering the extended overall backbone chain conformation. Formation of anti-parallel pairing of the β-galactan side chains allows us to suggest a novel mode of non-covalent cross-linking in pectins. Studied structural elements are organized to report the first attempt to characterize 3D structure of RG-I focusing on the special case of flax tertiary cell wall and elucidate the structural basis underlying the formation of RG-I self-associates and functional role of RG-I in planta

    Metrics of rhamnogalacturonan I with β-(1→4)-linked galactan side chains and structural basis for its self-aggregation

    Get PDF
    © 2016 Elsevier LtdWithin the family of plant cell wall polysaccharides rhamnogalacturonans I are the most diverse and structurally complex members. In present study we characterize the 3-dimensional structures and dynamic features of the constituents of RG-I along MD trajectories. It is demonstrated that extended threefold helical structure of the rhamnogalacturonan linear backbone is the most energetically favorable motif. Branching helps to stabilize a conformer of the backbone twisted along 1→2 glycosidic linkage triggering the orientation of long side chains without altering the extended overall backbone chain conformation. Formation of anti-parallel pairing of the β-galactan side chains allows us to suggest a novel mode of non-covalent cross-linking in pectins. Studied structural elements are organized to report the first attempt to characterize 3D structure of RG-I focusing on the special case of flax tertiary cell wall and elucidate the structural basis underlying the formation of RG-I self-associates and functional role of RG-I in planta

    Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications

    No full text
    © 2017 Elsevier LtdThe article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I. Removal of half of galactan chains from RG-I leads to loss of gelling capability pointing out on their leading role in this process. Rising of intensity of the bands attributed to galactose and glycosidic linkages in RG-I gel comparing to solution where this polymer exists as molecule associate indicates that the spatial organization of galactans in gel is changed. A model of the RG-I gelation is proposed: being destabilized at volumetric microwave heating RG-I associates are repacked forming network where RG-I molecules are entangled by galactan chains

    Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications

    Get PDF
    © 2017 Elsevier LtdThe article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I. Removal of half of galactan chains from RG-I leads to loss of gelling capability pointing out on their leading role in this process. Rising of intensity of the bands attributed to galactose and glycosidic linkages in RG-I gel comparing to solution where this polymer exists as molecule associate indicates that the spatial organization of galactans in gel is changed. A model of the RG-I gelation is proposed: being destabilized at volumetric microwave heating RG-I associates are repacked forming network where RG-I molecules are entangled by galactan chains

    Tissue-Specific Rhamnogalacturonan I Forms the Gel with Hyperelastic Properties

    No full text
    Plant cell wall is the source of the great number of carbohydrate structures that are built mainly on the base of ten types of polysaccharide backbones. The diversity of cell wall polysaccharides, including polysaccharides with the same type of backbone apparently correlates with their "functional fitting" Pectins including polygalacturonic acid and rhamnogalacturonan I and II take a key place among the well-characterized gel-forming polysaccharides of higher plants. The ability of pectin to form gel is mainly related with the presence of high-and low-methoxylated polygalacturonic acid in their structure , is located at the surface, and the neutral galactan chains, interacting with each ISSN 0006-2979, Biochemistry (Moscow), 2015, Vol. 80, No. 7, pp. 915-924. © Pleiades Publishing, Ltd., 2015. Published in Russian in Biokhimiya, 2015, Vol. 80, No. 7, pp. 1088-1098 915 Abbreviations: RGf, flax fiber rhamnogalacturonan I before incorporation into the cell wall; RGfcw, rhamnogalacturonan I of flax fiber cell wall; RGp, rhamnogalacturonan I of potato primary cell wall; RH, relative humidity. * To whom correspondence should be addressed. Abstract-Rhamnogalacturonans I are complex pectin polysaccharides extremely variable in structure and properties and widely represented in various sources. The complexity and diversity of the structure of rhamnogalacturonans I are the reasons for the limited information about the properties and supramolecular organization of these polysaccharides, including the relationship between these parameters and the functions of rhamnogalacturonans I in plant cells. In the present work, on the example of rhamnogalacturonan I from flax gelatinous fibers, the ability of this type of pectic polysaccharides to form at physiological concentrations hydrogels with hyperelastic properties was revealed for the first time. According to IR spectroscopy, water molecules are more tightly retained in the gelling rhamnogalacturonan I from flax fiber cell wall in comparison with the non-gelling rhamnogalacturonan I from primary cell wall of potato. With increase in strength of water binding by rhamnogalacturonan I, there is an increase in elastic modulus and decrease in Poisson's ratio of gel formed by this polysaccharide. The model of hyperelastic rhamnogalacturonan I capture by laterally interacting cellulose microfibrils, constructed using the finite element method, confirmed the suitability of rhamnogalacturonan I gel with the established properties for the function in the gelatinous cell wall, allowing consideration of this tissue-and stage-specific pectic polysaccharide as an important factor in creation of gelatinous fiber contractility. Tissue-Specific Rhamnogalacturona

    Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications

    No full text
    © 2017 Elsevier LtdThe article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I. Removal of half of galactan chains from RG-I leads to loss of gelling capability pointing out on their leading role in this process. Rising of intensity of the bands attributed to galactose and glycosidic linkages in RG-I gel comparing to solution where this polymer exists as molecule associate indicates that the spatial organization of galactans in gel is changed. A model of the RG-I gelation is proposed: being destabilized at volumetric microwave heating RG-I associates are repacked forming network where RG-I molecules are entangled by galactan chains
    corecore