59 research outputs found

    Investigation of a robust remote heterodyne envelope detector scheme for cost-efficient E-PON / 60 GHz wireless integration.

    Get PDF
    In this work, a simple remote heterodyne envelope detector scheme is proposed employing an O-SSB scheme for application in a converged E-PON/ 60 GHz scenario. The proposed PON-60GHz wireless system topology (Fig. 1) is discussed and an evaluation of this scheme is experimentally demonstrated including i) an OFDM 60 GHz wireless access system using indoor MMF, ordinary DFB lasers & ii) a 60 GHz wireless PON “bridge” using a VCSEL for the E-PON data. In both cases, the envelope detector scheme proves its robustness against phase/ wavelength variations while it preserves low cost and wavelength tolerance

    DWDM-PON/mm-Wave wireless converged Next Generation Access Topology using coherent heterodyne detection

    Get PDF
    A radio-over-fibre system using coherent optical heterodyne detection scheme is proposed, to achieve seamless integration of a photonic Remote Antenna Unit (RAU) into a Next Generation Dense Wavelength Division Multiplexed Passive Optical Network (NG DWDM-PON). The proposed scheme significantly simplifies the optical mm-wave generation and data recovery as it doesn't require any high-bandwidth modulator at the central office or high-frequency Local Oscillators (LOs) at either the central office or the customer unit; or optical phase-locking techniques to generate the mm-wave wireless signal. A proof-of-concept transmission utilizing 1 Gb/s On-Off Keying is experimentally demonstrated

    Bandwidth Compressed Waveform for 60 GHz Millimeter-Wave Radio over Fiber Experiment

    Get PDF
    A bandwidth compressed waveform termed spectrally efficient frequency division multiplexing (SEFDM) is experimentally demonstrated in a 60-GHz millimeter-wave (mm-wave) radio-over-fiber scenario to increase transmission data rates without changing signal bandwidth and modulation format. Experimental results show the advantages of SEFDM and confirm that the bit rate of SEFDM signals can be substantially higher than that of orthogonal frequency-division multiplexing (OFDM) signals. Experimentally, a 2.25 Gbit/s 4QAM OFDM signal is transmitted through 250 m of OM-1 multi-mode fiber and then it is optically up converted to 60 GHz band at the photodiode before delivery to a mm-wave antenna for transmission over a 3 meter wireless link. The work demonstrates that when the OFDM signal is replaced by an SEFDM signal using the same modulation format and occupying the same bandwidth, the bit rate can be increased, by a factor of up to 67%, to 3.75 Gbit/s at the expense of a 3-dB power penalty. Additionally, a bandwidth compressed 4QAM SEFDM is shown to outperform an 8QAM OFDM of the same spectral efficiency, thereby verifying that a lower order modulation format may replace a higher order one and achieve performance gain

    Novel 60 GHz CPW array antennas with beam-forming features for indoor wireless over fiber networks

    Get PDF
    In this study two types of coplanar waveguide (CPW) array antennas are designed and analyzed for use in a 60GHz Radio over Fiber indoor network. The first one is based on high permittivity Rogers 6010 and Indium Phosphide (InP) substrates incorporating slots as radiating elements. The second one utilizes stacked geometry based on the above substrates. Both arrays present more 1 GHz bandwidth and 10dBi gain. Furthermore they can provide beam-forming operation by properly adjusting the signal's amplitude and phase. A Least Mean Square (LMS) algorithm is generated for this purpose and the radiation pattern is steered accordingly. At last, a photodiode is simulated using equivalent circuit and is adopted with the proposed arrays, and an optical beam forming scenario is discussed. © 2013 SPIE

    Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project

    Full text link
    [EN] This study describes a wide range of salient radio-over-fibre system issues. Impulse radio and multiband ultra-wideband signal distribution over both single-mode fibre and multi-mode fibre (MMF) implementations are considered. Carrier frequencies ranging from 3.1 to 10.6 GHz, up to 60 GHz, are featured, and the use of microring laser transmitters is discussed. A cost-performance comparative analysis of competing distributed antenna system topologies is presented, and a theoretical approach to understanding the factors underlying radio-over-MMF performance for within-building applications is discussed. Finally, techniques to minimise thermal impacts on performance are described and novel energy-efficient schemes are introduced. Overall, this study provides a snap-shot of research being undertaken by European institutes involved in the Building the future Optical Network in Europe (BONE) project.The work described in this paper was carried out with the support of the EU-FP7 Network of Excellence BONE project.Parker, M.; Walker, SD.; Llorente, R.; Morant, M.; Beltrán, M.; Möllers, I.; Jäger, D.... (2010). Radio-over-fibre technologies arising from the Building the future Optical Network in Europe (BONE) project. IET Optoelectronics. 4(6):247-259. https://doi.org/10.1049/iet-opt.2009.0062S24725946http://www.ftthcouncil.euGomes, N. J., Morant, M., Alphones, A., Cabon, B., Mitchell, J. E., Lethien, C., … Iezekiel, S. (2009). Radio-over-fiber transport for the support of wireless broadband services [Invited]. Journal of Optical Networking, 8(2), 156. doi:10.1364/jon.8.000156Thakur, M. P., Quinlan, T. J., Bock, C., Walker, S. D., Toycan, M., Dudley, S. E. M., … Ben-Ezra, Y. (2009). 480-Mbps, Bi-Directional, Ultra-Wideband Radio-Over-Fiber Transmission Using a 1308/1564-nm Reflective Electro-Absorption Transducer and Commercially Available VCSELs. Journal of Lightwave Technology, 27(3), 266-272. doi:10.1109/jlt.2008.2005644ECMA-368 International Standard: ‘High rate ultra wideband PHY and MAC standard’, December 2008FCC 02-48: ‘Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems’, April 2002ECC∕DEC∕(06)04: ‘On the harmonised conditions for devices using ultra-wideband (UWB) technology in bands below 10.6 GHz’, March 2006ETSI EN 302 065 V1.1.1 (2008-02): ‘Electromagnetic compatibility and radio spectrum matters (ERM); ultra wideband (UWB) technologies for communication purposes; harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive’, February 2008WiMedia Alliance: Worldwide regulatory status [online]. Available at: http://www.wimedia.orgMikroulis, S., Simos, H., Roditi, E., & Syvridis, D. (2005). Ultrafast all-optical AND logic operation based on four-wave mixing in a passive InGaAsP-InP microring resonator. IEEE Photonics Technology Letters, 17(9), 1878-1880. doi:10.1109/lpt.2005.853260Argyris, A., Hamacher, M., Chlouverakis, K. E., Bogris, A., & Syvridis, D. (2008). Photonic Integrated Device for Chaos Applications in Communications. Physical Review Letters, 100(19). doi:10.1103/physrevlett.100.194101Win, M. Z., & Scholtz, R. A. (1998). On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Communications Letters, 2(2), 51-53. doi:10.1109/4234.660801Flatman, A.: In-premises optical fibre installed base analysis to 2007. Presented at the IEEE 802.3 10GbE over FDDI Grade Fibre Study Group, Orlando, FL, March 2004Raddatz, L., & White, I. H. (1999). Overcoming the modal bandwidth limitation of multimode fiber by using passband modulation. IEEE Photonics Technology Letters, 11(2), 266-268. doi:10.1109/68.740725Hartmann, P., Xin Qian, Wonfor, A., Penty, R. V., & White, I. H. (2005). 1-20 GHz Directly Modulated Radio over MMF Link. 2005 International Topical Meeting on Microwave Photonics. doi:10.1109/mwp.2005.203548Kanprachar, S., & Jacobs, I. (2003). Diversity coding for subcarrier multiplexing on multimode fibers. IEEE Transactions on Communications, 51(9), 1546-1553. doi:10.1109/tcomm.2003.816981Gasulla, I., & Capmany, J. (2006). Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems. Optics Express, 14(20), 9051. doi:10.1364/oe.14.009051Al-Raweshidy, H., and Komaki, S.: ‘Radio over fiber technologies for mobile communication networks’, (Artech House 2002)Sauer, M., Kobyakov, A., & George, J. (2007). Radio Over Fiber for Picocellular Network Architectures. Journal of Lightwave Technology, 25(11), 3301-3320. doi:10.1109/jlt.2007.906822Gomes, N. J., Nkansah, A., & Wake, D. (2008). Radio-Over-MMF Techniques—Part I: RF to Microwave Frequency Systems. Journal of Lightwave Technology, 26(15), 2388-2395. doi:10.1109/jlt.2008.925624Rajan, G., Semenova, Y., Pengfei Wang, & Farrell, G. (2009). Temperature-Induced Instabilities in Macro-Bend Fiber Based Wavelength Measurement Systems. Journal of Lightwave Technology, 27(10), 1355-1361. doi:10.1109/jlt.2009.2014081Montalvo, J., Vázquez, C., & Montero, D. S. (2006). CWDM self-referencing sensor network based on ring resonators in reflective configuration. Optics Express, 14(11), 4601. doi:10.1364/oe.14.00460

    Coronary artery bypass surgery in a patient with Kartagener syndrome: a case report and literature review

    Get PDF
    Kartagener syndrome consists of congenital bronchiectasis, sinusitis, and total situs inversus in half of the patients. A patient diagnosed with Kartagener syndrome was reffered to our department due to 3-vessel coronary disease. An off-pump coronary artery bypass operation was performed using both internal thoracic arteries and a saphenous vein graft. We performed a literature review for cases with Kartagener syndrome, coronary surgery and dextrocardia. Although a few cases of dextrocardia were found in the literature, no case of Kartagener syndrome was mentioned

    Acute pressure overload of the right ventricle. Comparison of two models of right-left shunt. Pulmonary artery to left atrium and right atrium to left atrium: experimental study

    Get PDF
    <p>Abtract</p> <p>Background</p> <p>In right ventricular failure (RVF), an interatrial shunt can relieve symptoms of severe pulmonary hypertension by reducing right ventricular preload and increasing systemic flow. Using a pig model to determine if a pulmonary artery - left atrium shunt (PA-LA) is better than a right atrial - left atrial shunt (RA-LA), we compared the hemodynamic effects and blood gases between the two shunts.</p> <p>Methods</p> <p>Thirty, male Large White pigs weighting in average 21.3 kg ± 0.7 (SEM) were divided into two groups (15 pigs per group): In group 1, banding of the pulmonary artery and a pulmonary artery to left atrium shunt with an 8 mm graft (PA-LA) was performed and in group 2 banding of the pulmonary artery and right atrial to left atrial shunt (RA-LA) with a similar graft was performed. Hemodynamic parameters and blood gases were measured from all cardiac chambers in 10 and 20 minutes, half and one hour interval from the baseline (30 min from the banding). Cardiac output and flow of at the left anterior descending artery was also monitored.</p> <p>Results</p> <p>In both groups, a stable RVF was generated. The PA-LA shunt compared to the RA-LA shunt has better hemodynamic performance concerning the decreased right ventricle afterload, the 4 fold higher mean pressure of the shunt, the better flow in left anterior descending artery and the decreased systemic vascular resistance. Favorable to the PA-LA shunt is also the tendency - although not statistically significant - in relation to central venous pressure, left atrial filling and cardiac output.</p> <p>Conclusion</p> <p>The PA-LA shunt can effectively reverse the catastrophic effects of acute RVF offering better hemodynamic characteristics than an interatrial shunt.</p

    Wafer-Bonded Active/Passive Vertically Coupled Microring Lasers

    Get PDF
    We summarize the results of a European Project entitled WAPITI (Waferbonding and Active Passive Integration Technology and Implementation) dealing with the fabrication and investigation of active/passive vertically coupled ring resonators, wafer bonded on GaAs, and based on full wafer technology. The concept allows for the integration of an active ring laser vertically coupled to a transparent bus waveguide. All necessary layers are grown in a single epitaxial run so that the critical coupling gap can be precisely controlled with the high degree of accuracy of epitaxial growth. One key challenge of the project was to establish a reliable wafer bonding technique using BCB as an intermediate layer. In intensive tests we investigated and quantified the effect of unavoidable shrinkage of the BCB on the overall device performance. Results on cw-operation, low threshold currents of about 8 mA, high side-mode suppression ratios in the range of 40 dB and large signal modulation bandwidths of up to 5 GHz for a radius of 40 μm shows the viability of the integration process
    corecore