4 research outputs found

    Formation of geomorphic features as a response to sea-level change at Ritidian Point, Guam, Mariana Islands

    Get PDF
    Geomorphic features have been one of the major tools for sea-level change studies. The present work shows an example of sea-level change study on karst terrain in the tropics. Sea-level notches as well as flank margin caves were identified in the research area and their elevation measured. The time of formation of the sea-level indicators was constrained by lithology study and dating methods such as facies comparison and U-Th dating. Denudation and uplift were also studied for the same purpose. From this study it can be concluded that sea-level stands within the glacial cycle can cause the formation of flank margin caves and that the position of these sea-level stands can be determined. The research area was estimated to have cumulatively uplifted ~22 m in the past 125 ka years (~0.18 mm/yr) while the surface has been denuded some 8 m in the same span of time (~0.064 mm/yr)

    Formation of geomorphic features as a response to sea-level change change at Ritidian Point, Guam, Mariana

    Get PDF
    Geomorphic features have been one of the major tools for sea-level change studies. The present work shows an example of sea-level change study on karst terrain in the tropics. Sea-level notches as well as flank margin caves were identified in the research area and their elevation measured. The time of formation of the sea-level indicators was constrained by lithology study and dating methods such as facies comparison and U-Th dating. Denudation and uplift were also studied for the same purpose. From this study it can be concluded that sea-level stands within the glacial cycle can cause the formation of flank margin caves and that the position of these sea-level stands can be determined. The research area was estimated to have cumulatively uplifted ∼22 m in the past 125 ka years (∼0.18 mm/yr) while the surface has been denuded some 8 m in the same span of time (∼0.064 mm/yr). Keywords: karst, karst hydrology, flank margin caves, sea-level change, denudation rate, uplift rate, sea-level notches, bioerosional notches, last interglacial, MIS 5e, mid-Holocene sea-level highstand, reef limestone, Gua

    Fly-ash evaluation as potential EOL material replacement of cement in pastes: morpho-structural and physico-chemical properties assessment

    No full text
    The main objective of the study was to produce alternative binder materials, obtained with low cost, low energy consumption, and low CO2 production, by regenerating end-of-life (EOL) materials from mineral deposits, to replace ordinary Portland cement (OPC). The materials analyzed were ash and slag from the Turceni thermal power plant deposit, Romania. These were initially examined for morphology, mineralogical composition, elemental composition, degree of crystallinity, and heating behavior, to determine their ability to be used as a potential source of supplementary cementitious materials (SCM) and to establish the activation and transformation temperature in the SCM. The in-situ pozzolanic behavior of commercial cement, as well as cement mixtures with different percentages of ash addition, were further observed. The mechanical resistance, water absorption, sorptivity capacity, resistance to alkali reactions (ASR), corrosion resistance, and resistance to reaction with sulfates were evaluated in this study using low-vacuum scanning electron microscopy
    corecore