19 research outputs found

    Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset)

    Get PDF
    This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts. Data and metadata are stored on the Open Science Framework website [https://osf.io/mhg94/]

    Data from an International Multi-Centre Study of Statistics and Mathematics Anxieties and Related Variables in University Students (the SMARVUS Dataset)

    Get PDF
    This large, international dataset contains survey responses from N = 12,570 students from 100 universities in 35 countries, collected in 21 languages. We measured anxieties (statistics, mathematics, test, trait, social interaction, performance, creativity, intolerance of uncertainty, and fear of negative evaluation), self-efficacy, persistence, and the cognitive reflection test, and collected demographics, previous mathematics grades, self-reported and official statistics grades, and statistics module details. Data reuse potential is broad, including testing links between anxieties and statistics/mathematics education factors, and examining instruments’ psychometric properties across different languages and contexts

    Concurrent Bending and Localized Impact on Sandwich Panels

    No full text

    Evaluation of the bi-phase composites failure model for finite element impact analyses of loaded plates

    Get PDF
    We assess the use of the Pam--Crash bi-phase failure model for the explicit finite element impact analysis of preloaded composite plates. The results obtained were compared with experimental work to corroborate the accuracy of the model. Overall, the trends displayed in the finite element simulations were consistent with experimental data, although quantitatively finite element results were conservative. The development of the model raised a number of issues concerning the accuracy and limitations of modelling techniques available

    Finite element modelling of impact on preloaded composite panels

    No full text
    Composite aircraft structures are susceptible to impact damage during manufacture, maintenance and in-flight. Low energy impact damage is often internal and invisible, but can significantly reduce the stiffness and strength or cause catastrophic failure when the structure is under load during the impact event. This paper describes the development and application of an explicit finite element (FE) model, incorporating a bi-phase material degradation model, to predict the behaviour of loaded carbon/epoxy panels when impacted over a range of low energy levels. Overall, the trends predicted in the FE simulations were consistent with experimental data, although quantitatively the FE results were generally conservative. However, the model greatly underestimated the catastrophic failure boundary. The model was used to investigate the effect of various parameters including magnitude of preload, impact velocity and specimen geometry on the amount of damage and the residual strength of carbon/epoxy panels
    corecore