43 research outputs found

    Psoriatic Inflammation Facilitates the Onset of Arthritis in a Mouse Model

    Get PDF
    Psoriatic arthritis (PsA) is a seronegative, inflammatory joint disease associated with psoriasis. In most patients with PsA, skin lesions precede arthritis; however, the causality of skin inflammation for the development of arthritis remains unclear. Gp130F759/F759 knock-in (F759) mice develop autoimmune arthritis after 1 year of age through persistent signal transducer and activator of transcription 3 (Stat3) activation due to impairment in SOCS3-dependent negative regulation. Here, we crossed F759 mice with K5.Stat3C transgenic mice, in which keratinocytes express constitutive active Stat3 (Stat3C), leading to generation of psoriasis-like skin change. F759 mice harboring the K5.Stat3C transgene not only had aggravated skin lesions but also spontaneously developed arthritis with high penetrance in adjacent paws as early as 3 weeks of age. The joint lesions included swelling of the peripheral paws and nail deformities contiguous with the skin lesions, closely resembling PsA. Histopathologic study revealed enthesitis and bone erosions, with mononuclear cell infiltrates. Quantitative reverse transcriptase–PCR (RT–PCR), immunohistochemical analyses, and flow cytometry showed upregulation of the IL-23/T helper type 17 (Th17) pathway in affected joints. Furthermore, enforced generation of psoriasis-like skin inflammation by topical treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) in F759 mice induced swelling of the underlying joints. This animal model renders psoriatic inflammation as the driver of arthritis and helps to further understand the pathogenesis of PsA

    S100C/A11 is a key mediator of Ca2+-induced growth inhibition of human epidermal keratinocytes

    Get PDF
    An increase in extracellular Ca2+ induces growth arrest and differentiation of human keratinocytes in culture. We examined possible involvement of S100C/A11 in this growth regulation. On exposure of the cells to high Ca2+, S100C/A11 was specifically phosphorylated at 10Thr and 94Ser. Phosphorylation facilitated the binding of S100C/A11 to nucleolin, resulting in nuclear translocation of S100C/A11. In nuclei, S100C/A11 liberated Sp1/3 from nucleolin. The resulting free Sp1/3 transcriptionally activated p21CIP1/WAF1, a representative negative regulator of cell growth. Introduction of anti-S100C/A11 antibody into the cells largely abolished the growth inhibition induced by Ca2+ and the induction of p21CIP1/WAF1. In the human epidermis, S100C/A11 was detected in nuclei of differentiating cells in the suprabasal layers, but not in nuclei of proliferating cells in the basal layer. These results indicate that S100C/A11 is a key mediator of the Ca2+-induced growth inhibition of human keratinocytes in culture, and that it may be possibly involved in the growth regulation in vivo as well

    Mechanistic Analysis of Resistance to REIC/Dkk-3-induced Apoptosis in Human Bladder Cancer Cells

    Get PDF
    We have recently shown that a new therapeutic modality using the REIC/Dkk-3 gene (Ad-REIC) is effective against various human cancers, including those of prostate, testis and breast origins. The aim of the present study was to examine the sensitivity of bladder cancers to Ad-REIC and to clarify the molecular mechanisms that determine sensitivity/resistance. We found that 2 human bladder cancer cell lines, T24 and J82, are resistant to Ad-REIC. In T24 and J82 cells, the ER stress response and activation of JNK were observed in a manner similar to that in the sensitive PC3 cells. Translocation of Bax to mitochondria occurred in PC3 cells but not in T24 and J82 cells. Bcl-2 was remarkably overexpressed in T24 and J82 compared with the expression levels in sensitive cell lines. Treatment of T24 and J82 cells with a Bcl-2 inhibitor sensitized the cells to Ad-REIC-induced apoptosis. The results indicate that some human bladder cancers are resistant to apoptosis induced by overexpression of REIC/Dkk-3, which is at least in part due to up-regulation of Bcl-2. These results provide a basis for possible use of Bcl-2 as a marker of sensitive cancers and to try to sensitize resistant cancers to Ad-REIC by down-regulation of Bcl-2.</p

    Induction of mesenchymal-epithelial transition in fibroblast-like spindle cancer cells by reprograming factors

    No full text

    Psoriasis-like skin lesion induced by Raf-MAPK signaling requires Stat3 activation.

    No full text

    Correction: involvement of TNF-α converting enzyme in the development of psoriasis-like lesions in a mouse model.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0112408.]

    Mesenchymal to Epithelial Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer Cells

    No full text
    <div><p>Epithelial to mesenchymal transition (EMT) is a biological process of metastatic cancer. However, an effective anticancer therapy that directly targets the EMT program has not yet been discovered. Recent studies have indicated that mesenchymal to epithelial transition (MET), the reverse phenomenon of EMT, is observed in fibroblasts during the generation of induced pluripotent stem cells. In the present study, we investigated the effects of reprogramming factors (RFs) on squamous cell carcinoma (SCC) cells. RFs-introduced cancer cells (RICs) demonstrated the enhanced epithelial characteristics in morphology with altered expression of mRNA and microRNAs. The motility and invasive activities of RICs <i>in vitro</i> were significantly reduced. Furthermore, xenografts of RICs exhibited no lymph node metastasis, whereas metastasis was detected in parental SCC-inoculated mice. Thus, we concluded that RICs regained epithelial properties through MET and showed reduced cancer malignancy <i>in vitro</i> and <i>in vivo</i>. Therefore, the understanding of the MET process in cancer cells by introduction of RFs may lead to the designing of a novel anticancer strategy.</p></div
    corecore