104 research outputs found
メロンとキュウリのACC合成酵素遺伝子の構造的特徴とGUSトランジェントアッセイによるプロモーター活性
In orader to clarify the differences in regulatory mechanism(s) of the expression of 1-aminocyclopropane-1-carboxylate(ACC) synthase(ACS)genes during ripening in climacteric melon fruit and non-climacteric cucumber fruit, two sets of their genomic DNA sequences, including ca. 2kb of the promoter regions were determined, using PCR-based methods. ACS genes from melon (CMe-ACS1,2) were structurally similar to their counterpart from cucumber (CS-ACS1,2) in terms of size and position of exons and introns, restriction map, and sequencd identity of exeons, introns, proximal 5'-flanking promoter regions and splice junction. Southern blot analysis indicated that each ACS gene is present as a single copy. Transient promoter activity was investigated with two constructs of promoter-β-glucuronidase (GUS) fusion, CMe-ACS1:GUS and CS-ACS1:GUS, in mature mesocarp tissue of the two fruits. In melon disks, GUS activities conferred by the promoters of both CS-ACS1 (-2098~+42) and CMe-ACS-1(-2187~+67) were detected, which were decreased by treatment with 1-methylcyclopropene(1-MCP), an ethylene action inhibitor. In cucumber disks, however, only CS-ACS1:GUS was expressed; the activity was decreased with 1-MCP, and it was not affected by propylene. These results suggest that the promoter of CS-ACS1 has a potential to be expressed in the mesocarp tissue of ripening melon fruit, and that the difference in ethylene biosynthesis between melon and cucumber during ripening may be due to the difference in capability of forming trans-acting factor(s), not due to their ACS1 promoter activities.クライマクテリック型果実のメロンとノンクライマクテリック型果実のキュウリの果実追熟に伴う1-アミ
ノシクロプロパン-1-カルボン酸(ACC)合成酵素(ACS)遺伝子の発現調節機構の相違を明らかにするた
めに,それぞれ2種類のACSのゲムノDNA配列(約2kb)をPCR法を基にして決定した.メロンのACS
遺伝子は,エキソンとイントロンのサイズおよび位置,制限酵素地図,エキソン・イントロン・近位の5’上
流プロモーター領域・スプライシング部位の塩基配列において,それぞれ対応するキュウリのACS遺伝子
とよく似た構造をしていた.サザンブロック解析の結果,各ACS遺伝子はシングルコピーとして存在する
と考えられた.CMe-ACS1とCS-ACS1の一過的プロモーター活性をβ-グルクロニダーゼ(GUS)をレポ
ーター遺伝子として両果実の成熟果肉を用いて調べた.メロン切片では,CS-ACS1(-2098~+42)なら
びにCMe-ACS1(-2187~+67)のプロモーター発現によるGUS活性が検出され,エチレン作用阻害剤
の1-メチルシクロプロペン(1-MCP)処理によって減少した.しかし,キュウリ切片においては,CS-ACS1:
GUSのみでGUSが発現し,活性は1-MCP処理で減少し,プロピレン処理ではコントロールと同レベル
であった.これらの結果より,CS-ACS1のプロモーターがメロン成熟果肉組織で発現する潜在能力をもつ
こと,メロンとキュウリの成熟に伴うエチレン生合成の相違はACS1プロモーター活性によるものではなく,
両者のトランス因子合成能の相違によることが示唆された
Quorum-dependent expression of rsmX and rsmY, small non-coding RNAs, in Pseudomonas syringae
Pseudomonas syringae pathovars are known to produce N-acyl-homoserine lactones (AHL) as quorum-sensing molecules. However, many isolates, including P. syringae pv. tomato DC3000 (PtoDC3000), do not produce them. In P. syringae, psyI, which encodes an AHL synthase, and psyR, which encodes the transcription factor PsyR required for activation of psyI, are convergently transcribed. In P. amygdali pv. tabaci 6605 (Pta6605), there is one nucleotide between the stop codons of both psyI and psyR. However, the canonical stop codon for psyI in PtoDC3000 was converted to the cysteine codon by one nucleotide deletion, and 23 additional amino acids extended it to a C-terminal end. This resulted in overlapping of the open reading frame (ORF) for psyI and psyR. On the other hand, stop codons in the psyR ORF of P. syringae 7 isolates, including pv. phaseolicola and pv. glycinea, were found. These results indicate that many pathovars of P. syringae have genetically lost AHL production ability by the mutation of their responsible genes. To examine whether PtoDC3000 modulates the gene expression profile in a population-dependent manner, we carried out microarray analysis using RNAs prepared from low- and high-density cells. We found the expressions of rsmX and rsmY remarkably activated in high-density cells. The activated expressions of rsmX and rsmY were confirmed by Northern blot hybridization, but these expressions were abolished in a ΔgacA mutant of Pta6605. These results indicate that regardless of the ability to produce AHL, P. syringae regulates expression of the small noncoding RNAs rsmX/Y by currently unknown quorum-sensing molecules
Requirement of γ-Aminobutyric Acid Chemotaxis for Virulence of Pseudomonas syringae pv. tabaci 6605
γ-Aminobutyric acid (GABA) is a widely distributed non-proteinogenic amino acid that accumulates in plants under biotic and abiotic stress conditions. Recent studies suggested that GABA also functions as an intracellular signaling molecule in plants and in signals mediating interactions between plants and phytopathogenic bacteria. However, the molecular mechanisms underlying GABA responses to bacterial pathogens remain unknown. In the present study, a GABA receptor, named McpG, was conserved in the highly motile plant-pathogenic bacteria Pseudomonas syringae pv. tabaci 6605 (Pta6605). We generated a deletion mutant of McpG to further investigate its involvement in GABA chemotaxis using quantitative capillary and qualitative plate assays. The wild-type strain of Pta6605 was attracted to GABA, while the ΔmcpG mutant abolished chemotaxis to 10 mM GABA. However, ΔmcpG retained chemotaxis to proteinogenic amino acids and succinic semialdehyde, a structural analog of GABA. Furthermore, ΔmcpG was unable to effectively induce disease on host tobacco plants in three plant inoculation assays: flood, dip, and infiltration inoculations. These results revealed that the GABA sensing of Pta6605 is important for the interaction of Pta6605 with its host tobacco plant
HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509'
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host & apos;s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta increment hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta increment hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509
Identification of Aerotaxis Receptor Proteins Involved in Host Plant Infection by Pseudomonas syringae pv. tabaci 6605
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a foliar plant pathogen that causes wildfire disease on tobacco plants. It requires chemotaxis to enter plants and establish infection. While chemotactic signals appear to be the main mechanism by which Pta6605 performs directional movement, the involvement of aerotaxis or energy taxis by this foliar pathogen is currently unknown. Based on domain structures and similarity with more than 50 previously identified putative methyl-accepting chemotaxis proteins (MCPs), the genome of Pta6605 encodes three potential aerotaxis transducers. We identified AerA as the main aerotaxis transducer and found that it possesses a taxis-to-serine-and-repellent (Tsr)-like domain structure that supports a periplasmic 4HB-type ligand-binding domain (LBD). The secondary aerotaxis transducer, AerB, possesses a cytosolic PAS-type LBD, similar to the Aer of Escherichia coli and Pseudomonas aeruginosa. Aerotaxis ability by single and double mutant strains of aerA and aerB was weaker than that by wild-type Pta6605. On the other hand, another cytosolic PAS-type LBD containing MCP did not make a major contribution to Pta6605 aerotaxis in our assay system. Furthermore, mutations in aerotaxis transducer genes did not affect surface motility or chemotactic attraction to yeast extract. Single and double mutant strains of aerA and aerB showed less colonization in the early stage of host plant infection and lower biofilm production than wild-type Pta6605. These results demonstrate the presence of aerotaxis transducers and their contribution to host plant infection by Pta6605
PsyR, a transcriptional regulator in quorum sensing system, binds lux box-like sequence in psyI promoter without AHL quorum sensing molecule and activates psyI transcription with AHL in Pseudomonas syringae pv. tabaci 6605
Quorum sensing (QS) is a mechanism for bacterial cell-cell communication using QS signals. N-acyl-homoserine lactones (AHLs), QS signals in Pseudomonas syringae pv. tabaci (Pta) 6605, are synthesized by an AHL synthase (PsyI) and recognized by the cognate transcription factor PsyR. To reveal the role of PsyR in virulence, we generated a psyR mutant and complemented strains of Pta 6605 and found that the psyR mutant is remarkably reduced in AHL production and ability to cause disease and propagate in host tobacco leaves. The phenotypes of complemented strains were restored to that of the wild type (WT). Because the psyR mutant lost nearly all AHL production, we investigated the function of PsyR in the transcription of psyI and production of AHL. Electrophoretic mobility shift assays suggested that the recombinant PsyR protein binds the promoter region of psyI but not psyR without AHL. The addition of AHL did not significantly affect this binding. The binding core sequence of this region was identified as a 20-bp lux box-like sequence. To reveal the function of PsyR and AHL on psyI transcription, we constructed a psyI promoter::lacZYA chimeric reporter gene, and inserted it into the WT and psyI mutant of Pta 6605. beta-galactosidase activity increased in a bacterial density-dependent manner in the WT and also in a psyI mutant after the addition of exogenous AHL. These results indicate that the solo PsyR binds the lux box in the psyI promoter and activates transcription in the concomitant presence of AHL
Positive chemotaxis to plant apoplastic fluids of Pseudomonas syringae pv. tabaci 6605 and metabolome analysis
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants. Although chemotaxis has been shown to be necessary for Pta6605 in tobacco infection, the chemoattractants at the site of infection are unclear. Pta6605 was attracted to the apoplastic fluid from not only host tobacco leaves but also non-host plant leaves, indicating that Pta6605 is attracted to common plant metabolites. Metabolome analysis of apoplastic fluid from tobacco leaves revealed that amino acids including γ-aminobutyric acid and organic acids are abundant, suggesting that these compounds are potential chemoattractants
Complete Genome Sequence of Pseudomonas amygdali pv. tabaci Strain 6605, a Causal Agent of Tobacco Wildfire Disease
Pseudomonas amygdali pv. tabaci strain 6605 is the bacterial pathogen causing tobacco wildfire disease that has been used as a model for elucidating virulence mechanisms. Here, we present the complete genome sequence of P. amygdali pv. tabaci 6605 as a circular chromosome from reads using a PacBio sequencer
Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence
Pseudomonas syringae pv. tabaci 6605 (Pta6605) is a causal agent of wildfire disease in host tobacco plants and is highly motile. Pta6605 has multiple clusters of chemotaxis genes including cheA, a gene encoding a histidine kinase, cheY, a gene encoding a response regulator, mcp, a gene for a methyl-accepting chemotaxis protein, as well as flagellar and pili biogenesis genes. However, only two major chemotaxis gene clusters, cluster I and cluster II, possess cheA and cheY. Deletion mutants of cheA or cheY were constructed to evaluate their possible role in Pta6605 chemotaxis and virulence. Motility tests and a chemotaxis assay to known attractant demonstrated that cheA2 and cheY2 mutants were unable to swarm and to perform chemotaxis, whereas cheA1 and cheY1 mutants retained chemotaxis ability almost equal to that of the wild-type (WT) strain. Although WT and cheY1 mutants of Pta6605 caused severe disease symptoms on host tobacco leaves, the cheA2 and cheY2 mutants did not, and symptom development with cheA1 depended on the inoculation method. These results indicate that chemotaxis genes located in cluster II are required for optimal chemotaxis and host plant infection by Pta6605 and that cluster I may partially contribute to these phenotypes
Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon
Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1-3 and 29 RsSEPGs in the cluster 4-6 are expected to be involved in biotrophic and necrotrophic interactions, respectively
- …