115 research outputs found

    Distribution and toxicity evaluation of ZnO dispersion nanoparticles in single intravenously exposed mice

    Get PDF
    ZnO nanoparticles (NPs) have been widely used in various commercial products. Application of ZnO NPs is expected to apply to cancer diagnosis and therapy, used as drug delivery carriers. In the present study, the lethal dose 50 (LD50) of intravenously administered ZnO NPs (0.3 mg/kg) was calculated in mice. Blood kinetics and tissue distribution of a toxic dose of ZnO NPs (0.2 mg/kg, 0.05 mg/kg) were investigated after intravenous exposure. In addition, 8-hydroxy-2’-deoxyguanosine (8-OHdG) was evaluated. Following the injection, ZnO NPs were rapidly removed from the blood and distributed to organs. Pulmonary emphysema was observed pathologically study in mice at 3 days after the 0.2 mg/kg dose and at 6 days after the 0.05 mg/kg dose. ZnO NPs were mainly accumulated in the lung and spleen within 60 min. From the long-term tissue distribution study, the liver showed peak concentration at 6 days, and spleen peaked at 1 day. The lungs kept high levels until 6 days. Tissue distribution and pathological study showed that the spleen, liver, and lungs are target organs for ZnO NPs. Accumulation in the liver and spleen may be due to the phagocytosis by macrophages. A dose-dependent increase in 8-OHdG was observed in mice treated with ZnO NPs. This study is the first to show information on kinetics and target organs following intravenous ZnO injection

    Christopher Simpson The Division-Viol, or, The Art of PLAYING Extempore upon a GROUND. EDITIO SECVNDA Dedication & Recommendation

    Get PDF
    本訳稿はChristopher Simpson (1605頃-1669) 著 The Division-Viol, or, The Art of PLAYING Ex tempore upon a GROUND. DIVIDED INTO THREE PARTS. EDITIO SECVNDA, London, 1665 の著者による献辞および楽譜出版権所有者による推薦文の全訳である

    Cell-to-Cell Transformation in Escherichia coli: A Novel Type of Natural Transformation Involving Cell-Derived DNA and a Putative Promoting Pheromone

    Get PDF
    Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain). In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as ‘cell-to-cell transformation’. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s) that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10–5–10–6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria

    Preliminary Study of Dental Caries Detection by Deep Neural Network Applying Domain-Specific Transfer Learning

    Get PDF
    Purpose The purpose of this study is to confirm whether it is possible to acquire a certain degree of diagnostic ability even with a small dataset using domain-specific transfer learning. In this study, we constructed a simulated caries detection model on panoramic tomography using transfer learning. Methods A simulated caries model was trained and validated using 1094 trimmed intraoral images. A convolutional neural network (CNN) with three convolution and three max pooling layers was developed. We applied this caries detection model to 50 panoramic images and evaluated its diagnostic performance. Results The diagnostic performance of the CNN model on the intraoral film was as follows: C0 84.6%; C1 90.6%; C2 88.6%. Finally, we tested 50 panoramic images with simulated caries insertion. The diagnostic performance of the CNN model on the panoramic image was as follows: C0 75.0%, C1 80.0%, C2 80.0%, and overall diagnostic accuracy was 78.0%. The diagnostic performance of the caries detection model constructed only with panoramic images was much lower than that of the intraoral film. Conclusion Domain-specific transfer learning methods may be useful for saving datasets and training time (179/250)

    An imaging‑based diagnostic approach to vascular anomalies of the oral and maxillofacial region

    Get PDF
    The accurate diagnosis of vascular anomalies (VAs) is considered a challenging endeavor. Misdiagnosis of VAs can lead clinicians in the wrong direction, such as the performance of an unnecessary biopsy or inappropriate surgical procedures, which can potentially lead to unforeseen consequences and increase the risk of patient injury. The purpose of the present study was to develop an approach for the diagnosis of VAs of the oral and maxillofacial region based on computed tomography (CT), magnetic resonance imaging (MRI) and dynamic contrast‑enhanced MRI (DCE‑MRI). In the present study, the CT and MR images of 87 VAs were examined, and the following imaging features were evaluated: Detectability of the lesion, the periphery of the lesion, the inner nature of the lesion, the density of the lesion on CT, the signal intensity of the lesion on MRI, the detectability of phleboliths and the shape of the lesion. A total of 29 lesions were further evaluated using the contrast index (CI) curves created from the DCE‑MRI images. A diagnostic diagram, which is based on the imaging features of VAs and CI curve patterns, was subsequently extrapolated. The results obtained demonstrated that the VAs were detected more readily by MRI compared with CT, whereas the detectability of phleboliths was superior when using CT compared with MRI. VAs showed a propensity for homogeneous isodensity on CT, whereas, by contrast, they exhibited a propensity for heterogeneous hyperdensity on CE‑CT. VAs also showed a propensity for homogeneous intermediate signal intensity when performing T1‑weighted imaging (T1WI), heterogeneous high signal intensity when performing short tau inversion recovery MRI, and heterogeneous high signal intensity when performing fat‑saturated CE‑T1WI. The CI curves of VAs were found to exhibit a specific pattern: Of the 29 CI curves, 23 (79.3%) showed early weak enhancement, followed by a plateau leading up to 400‑600 sec. An imaging‑based diagnostic diagram was ultimately formulated. This diagram can act as an aid for radiologists when they are expecting to find a VA, and hopefully serve the purpose of simplifying the diagnostic process. Taken together, the findings of the present study indicated that DCE‑MRI may be considered a useful tool for the diagnosis of VAs

    Recent advances in the field of oral bacteriology

    No full text
    corecore