30 research outputs found

    Excessive daytime napping independently associated with decreased insulin sensitivity in cross-sectional study – Hyogo Sleep Cardio-Autonomic Atherosclerosis cohort study

    Get PDF
    BackgroundAlthough excessive daytime napping has been shown to be involved in diabetes occurrence, its impact on insulin secretion and sensitivity has not been elucidated. It is speculated that excessive napping disrupts the sleep-wake rhythm and increases sympathetic nerve activity during the day, resulting in decreased insulin sensitivity, which may be a mechanism leading to development of diabetes. We previously conducted a cross-sectional study that showed an association of autonomic dysfunction with decreased insulin sensitivity, though involvement of autonomic function in the association between napping and insulin sensitivity remained unclear. Furthermore, the effects of napping used to supplement to short nighttime sleep on insulin secretion and sensitivity are also unknown. In the present cross-sectional study, we examined the relationships of daytime nap duration and autonomic function with insulin secretion and sensitivity in 436 subjects enrolled in the Hyogo Sleep Cardio-Autonomic Atherosclerosis (HSCAA) Cohort Study who underwent a 75-g oral glucose tolerance test (75-g OGTT), after excluding those already diagnosed with diabetes.MethodsDaytime nap duration was objectively measured using actigraphy, with the subjects divided into the short (≤1 hour) and long (>1 hour) nap groups. Insulin secretion and sensitivity were determined using 75-g OGTT findings. Standard deviation of normal to normal R-R interval (SDNN), a measure of autonomic function, was also determined based on heart rate variability. Subgroup analysis was performed for the associations of napping with insulin secretion and sensitivity, with the results stratified by nighttime sleep duration of less or greater than six hours.ResultsSubjects in the long nap group exhibited lower insulin sensitivity parameters (QUICKI: β=-0.135, p<0.01; Matsuda index: β=-0.119, p<0.05) independent of other clinical factors. In contrast, no associations with insulin secretion were found in either group. Furthermore, the association of long nap duration with insulin sensitivity was not confounded by SDNN. Specific subgroup analyses revealed more prominent associations of long nap habit with lower insulin sensitivity in subjects with a short nighttime sleep time (β=-0.137, p<0.05).ConclusionLong daytime nap duration may be a potential risk factor for decreased insulin sensitivity

    Diabetes mellitus itself increases cardio- cerebrovascular risk and renal complications in primary aldosteronism

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in The Journal of Clinical Endocrinology & Metabolism following peer review. The version of record Aya Saiki, Michio Otsuki, Daisuke Tamada, Tetsuhiro Kitamura, Iichiro Shimomura, Isao Kurihara, Takamasa Ichijo, Yoshiyu Takeda, Takuyuki Katabami, Mika Tsuiki, Norio Wada, Toshihiko Yanase, Yoshihiro Ogawa, Junji Kawashima, Masakatsu Sone, Nobuya Inagaki, Takanobu Yoshimoto, Ryuji Okamoto, Katsutoshi Takahashi, Hiroki Kobayashi, Kouichi Tamura, Kohei Kamemura, Koichi Yamamoto, Shoichiro Izawa, Miki Kakutani, Masanobu Yamada, Akiyo Tanabe, Mitsuhide Naruse, Diabetes Mellitus Itself Increases Cardio-Cerebrovascular Risk and Renal Complications in Primary Aldosteronism, The Journal of Clinical Endocrinology & Metabolism, Volume 105, Issue 7, July 2020, Pages e2531–e2537 is available online at: https://doi.org/10.1210/clinem/dgaa177

    Genetic Rearrangements Can Modify Chromatin Features at Epialleles

    Get PDF
    Analogous to genetically distinct alleles, epialleles represent heritable states of different gene expression from sequence-identical genes. Alleles and epialleles both contribute to phenotypic heterogeneity. While alleles originate from mutation and recombination, the source of epialleles is less well understood. We analyze active and inactive epialleles that were found at a transgenic insert with a selectable marker gene in Arabidopsis. Both converse expression states are stably transmitted to progeny. The silent epiallele was previously shown to change its state upon loss-of-function of trans-acting regulators and drug treatments. We analyzed the composition of the epialleles, their chromatin features, their nuclear localization, transcripts, and homologous small RNA. After mutagenesis by T-DNA transformation of plants carrying the silent epiallele, we found new active alleles. These switches were associated with different, larger or smaller, and non-overlapping deletions or rearrangements in the 3′ regions of the epiallele. These cis-mutations caused different degrees of gene expression stability depending on the nature of the sequence alteration, the consequences for transcription and transcripts, and the resulting chromatin organization upstream. This illustrates a tight dependence of epigenetic regulation on local structures and indicates that sequence alterations can cause epigenetic changes at some distance in regions not directly affected by the mutation. Similar effects may also be involved in gene expression and chromatin changes in the vicinity of transposon insertions or excisions, recombination events, or DNA repair processes and could contribute to the origin of new epialleles

    Lipopolysaccharide-binding protein is associated with arterial stiffness in patients with type 2 diabetes: a cross-sectional study

    No full text
    Abstract Background Lipopolysaccharide (LPS)-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS. Recent evidence indicates the association of circulating LBP levels with obesity, diabetes, and cardiovascular diseases. In this study, we aimed to investigate the relationship between serum LBP levels and arterial stiffness in patients with type 2 diabetes. Methods A total of 196 patients with type 2 diabetes, including 101 men and 95 women, were enrolled in this cross-sectional study. Fasting serum LBP levels were determined by enzyme-linked immunosorbent assay. Arterial stiffness was assessed by measuring the aortic pulse wave velocity (PWV). Results The mean values of serum LBP and aortic PWV were 18.2 μg/mL and 1194 cm/s, respectively. Serum LBP levels were positively correlated with body mass index, triglycerides, high-sensitivity C-reactive protein, and insulin resistance index and were negatively correlated with high-density lipoprotein cholesterol. They were, however, not significantly correlated with aortic PWV in univariate analyses. Multivariate analysis revealed that serum LBP levels were independently and positively associated with aortic PWV (β = 0.135, p = 0.026) after adjusting for age, sex, body mass index, albumin, high-sensitivity C-reactive protein, and other cardiovascular risk factors. Further analyses revealed that the impact of serum LBP levels on aortic PWV was modified by sex, and the association between serum LBP levels and aortic PWV was found to be significant only in men. Conclusions Serum LBP levels are associated with arterial stiffness, independent of obesity and traditional cardiovascular risk factors, especially in men with type 2 diabetes. This study indicates a potential role of the LPS/LBP-induced innate immunity in the development and progression of arterial stiffness in type 2 diabetes

    Associations of Sleep Quality and Awake Physical Activity with Fluctuations in Nocturnal Blood Pressure in Patients with Cardiovascular Risk Factors.

    No full text
    BACKGROUND:Sleep quality and awake physical activity are important behavioral factors involved in the occurrence of cardiovascular diseases, potentially through nocturnal blood pressure (BP) changes. However, the impacts of quantitatively measured sleep quality and awake physical activity on BP fluctuation, and their relationships with several candidate causal factors for nocturnal hypertension are not well elucidated. METHODS:This cross-sectional study included 303 patients registered in the HSCAA study. Measurements included quantitatively determined sleep quality parameters and awake physical activity obtained by actigraph, nocturnal systolic BP (SBP) fall [100 × (1- sleep SBP/awake SBP ratio)], apnea hypopnea index, urinary sodium and cortisol secretion, plasma aldosterone concentration and renin activity, insulin resistance index, parameters of heart rate variability (HRV), and plasma brain-derived neurotrophic factor (BDNF). RESULTS:Simple regression analysis showed that time awake after sleep onset (r = -0.150), a parameter of sleep quality, and awake physical activity (r = 0.164) were significantly correlated with nocturnal SBP fall. Among those, time awake after sleep onset (β = -0.179) and awake physical activity (β = 0.190) were significantly and independently associated with nocturnal SBP fall in multiple regression analysis. In a subgroup of patients without taking anti-hypertensive medications, both time awake after sleep onset (β = -0.336) and awake physical activity (β = 0.489) were more strongly and independently associated with nocturnal SBP falls. CONCLUSION:Sleep quality and awake physical activity were found to be significantly associated with nocturnal SBP fall, and that relationship was not necessarily confounded by candidate causal factors for nocturnal hypertension

    Sleep Apnea and Physical Movement During Sleep, But Not Sleep Duration, Are Independently Associated With Progression of Left Ventricular Diastolic Dysfunction: Prospective Hyogo Sleep Cardio‐Autonomic Atherosclerosis Cohort Study

    No full text
    Background Although co‐occurrence of sleep disorder with heart failure is known, it is not clear whether that condition is a cause or consequence of heart failure. The present study was conducted as a longitudinal examination of the predictive value of sleep parameters on progression of left ventricular diastolic dysfunction. Methods and Results Four‐hundred fifty‐two subjects were followed for a mean of 34.7 months. An outcome of diastolic dysfunction was defined as increase in early inflow velocity/early diastolic tissue velocity >14. Sleep apnea‐hypopnea index, minimal oxygen saturation, sleep duration, and activity index (physical movement during sleep time, a potential parameter of poor sleep quality) were determined using apnomonitor and actigraphy findings, while heart rate variability was measured with a 24‐hour active tracer device. Sixty‐six of the patients developed diastolic dysfunction during the follow‐up period, with a median time of 25 months. Kaplan–Meier analysis results revealed that those with sleep apnea classified as moderate (apnea‐hypopnea index 15 to <30, P<0.01 versus none) or severe (apnea‐hypopnea index ≥30, P<0.01 versus none), and with a high activity index (Q3 or Q4, P<0.01 versus Q1), but not short sleep duration (P=0.27) had a significantly greater risk for a diastolic dysfunction event. Results of multivariable Cox proportional hazards regression analysis indicated that moderate to severe sleep apnea after a follow‐up period of 3 years (hazard ratio [HR], 9.26 [95% CI, 1.89–45.26], P<0.01) and high activity index (HR, 1.85 [95% CI, 1.01–3.39], P=0.04) were significantly and independently associated with future diastolic dysfunction. Moreover, significant association of high activity index with the outcome was not confounded by either minimal oxygen saturation or heart rate variability. Conclusions Sleep apnea and physical movement during sleep, but not sleep duration and autonomic nervous dysfunction, are independent important predictors for progression of left ventricular diastolic dysfunction

    Plasma brain-derived neurotrophic factor concentration is a predictor of chronic kidney disease in patients with cardiovascular risk factors – Hyogo Sleep Cardio-Autonomic Atherosclerosis study

    No full text
    <div><p>Background</p><p>Brain-derived neurotrophic factor (BDNF) has been shown to have protective effects against cardiovascular diseases and death through neural and non-neural pathways via tropomyosin-related kinase B signaling. However, it is not known whether plasma BDNF concentration is a predictor of chronic kidney disease (CKD).</p><p>Design</p><p>This study was conducted as a prospective cohort study as part of the Hyogo Sleep Cardio-Autonomic Atherosclerosis.</p><p>Methods</p><p>We measured plasma BDNF concentration in 324 patients without CKD, defined as an estimated glomerular filtration rate (eGFR) less than 60 ml/min/1.73m<sup>2</sup>, and with cardiovascular risk factors. As potential confounders, sleep condition, nocturnal hypertension, and autonomic function were quantitatively examined. The patients were followed for a median 37 months (range 2–59 months) and occurrence of CKD was noted.</p><p>Results</p><p>Plasma BDNF concentration was significantly and independently associated with CKD development, which occurred in 38 patients (11.7%). Kaplan-Meier analysis revealed that patients with reduced plasma BDNF concentration exhibited a significantly (p = 0.029) greater number of CKD events as compared to those with a higher concentration. Moreover, comparisons of key subgroups showed that the risk of CKD in association with low plasma BDNF concentration was more prominent in patients with a greater reduction of nocturnal systolic blood pressure, better movement index, higher standard deviations of the NN(RR) interval or average NN(RR) interval for each 5-minute period, and without past cardiovascular disease events, smoking habit, or albuminuria.</p><p>Conclusions</p><p>Plasma BDNF concentration is an independent predictor for development of CKD in patients with cardiovascular risk factors.</p></div
    corecore