31 research outputs found

    Electronic health record nested pragmatic randomized controlled trial of a reminder system for serum lithium level monitoring in patients with mood disorder: KONOTORI study protocol

    Get PDF
    Background: The weaknesses of classical explanatory randomized controlled trials (RCTs) include limited generalizability, high cost, and time burden. Pragmatic RCTs nested within electronic health records (EHRs) can be useful to overcome such limitations. Serum lithium monitoring has often been underutilized in real-world practice in Japan. This trial aims to evaluate the effectiveness of the EHR-nested reminder system for serum lithium level monitoring in the maintenance of therapeutic lithium concentration and in the improvement of the quality of care for patients on lithium maintenance therapy. Methods: The Kyoto Toyooka nested controlled trial of reminders (KONOTORI trial) is an EHR-nested, parallel-group, superiority, stratified, permuted block-randomized controlled trial. Screening, random allocation, reminder output, and outcome collection will be conducted automatically by the EHR-nested trial program. Patients with a mood disorder taking lithium carbonate for maintenance therapy will be randomly allocated to the two-step reminder system for serum lithium monitoring or to usual care. The primary outcome is the achievement of therapeutic serum lithium concentration between 0.4 and 1.0 mEq/L at 18 months after informed consent. Discussion: The KONOTORI trial uses EHRs to enable the efficient conduct of a pragmatic trial of the reminder system for lithium monitoring. This may contribute to improved quality of care for patients on lithium maintenance therapy. Trial registration: University Hospital Medical Information Network (UMIN) Clinical Trials Registry, UMIN000033633. Registered on 3 July 2018

    Polymorphisms and Body Mass Index Across Life Course

    Get PDF
    Background: Obesity is a reported risk factor for various health problems. Genome-wide association studies (GWASs) have identified numerous independent loci associated with body mass index (BMI). However, most of these have been focused on Europeans, and little evidence is available on the genetic effects across the life course of other ethnicities. Methods: We conducted a cross-sectional study to examine the associations of 282 GWAS-identified single nucleotide polymorphisms with three BMI-related traits, current BMI, BMI at 20 years old (BMI at 20), and change in BMI (BMI change), among 11,586 Japanese individuals enrolled in the Japan Multi-Institutional Collaborative Cohort study. Associations were examined using multivariable linear regression models. Results: We found a significant association (P < 0.05/282 = 1.77 × 10−4) between BMI and 11 polymorphisms in or near FTO, BDNF, TMEM18, HS6ST3, and BORCS7. The trend was similar between current BMI and BMI change, but differed from that of the BMI at 20. Among the significant variants, those on FTO were associated with all BMI traits, whereas those on TMEM18 and HS6SR3 were only associated with BMI at 20. The association of FTO loci with BMI remained, even after additional adjustment for dietary energy intake. Conclusions: Previously reported BMI-associated loci discovered in Europeans were also identified in the Japanese population. Additionally, our results suggest that the effects of each loci on BMI may vary across the life course and that this variation may be caused by the differential effects of individual genes on BMI via different pathways

    Association Between PSCA Variants and Duodenal Ulcer Risk

    Get PDF
    Background: While duodenal ulcer (DU) and gastric cancer (GC) are both H. pylori infection-related diseases, individuals with DU are known to have lower risk for GC. Many epidemiological studies have identified the PSCA rs2294008 T-allele as a risk factor of GC, while others have found an association between the rs2294008 C-allele and risk of DU and gastric ulcer (GU). Following these initial reports, however, few studies have since validated these associations. Here, we aimed to validate the association between variations in PSCA and the risk of DU/GU and evaluate its interaction with environmental factors in a Japanese population. Methods: Six PSCA SNPs were genotyped in 584 DU cases, 925 GU cases, and 8,105 controls from the Japan Multi-Institutional Collaborative Cohort (J-MICC). Unconditional logistic regression models were applied to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between the SNPs and risk of DU/GU. Results: PSCA rs2294008 C-allele was associated with per allele OR of 1.34 (95% CI, 1.18–1.51; P = 2.28 × 10−6) for the risk of DU. This association was independent of age, sex, study site, smoking habit, drinking habit, and H. pylori status. On the other hand, we did not observe an association between the risk of GU and PSCA SNPs. Conclusions: Our study confirms an association between the PSCA rs2294008 C-allele and the risk of DU in a Japanese population

    Overexpression of Chitinase 3-Like 1/YKL-40 in Lung-Specific IL-18-Transgenic Mice, Smokers and COPD

    Get PDF
    We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of −950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV1. Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients

    Crystallographic characterization of the high-potential iron-sulfur protein in the oxidized state at 0.8 Å resolution

    Get PDF
    High-potential iron-sulfur protein (HiPIP) is a soluble electron carrier protein of photosynthetic bacteria with an Fe4S4 cluster. Although structural changes accompanying the electron transfer are important for understanding of the functional mechanism, the changes have not been clarified in sufficient detail. We previously reported the high-resolution crystal structures of HiPIP from a thermophilic purple bacterium Thermochromatium tepidum in the reduced state. In order to perform a detailed comparison between the structures in different redox states, the oxidized structure should also be revealed at high resolution. Therefore, in the present study we performed a crystallographic analysis of oxidized HiPIP and a structural comparison with the reduced form at a high resolution of 0.8 Å. The comparison highlighted small but significant contraction in the iron-sulfur cluster. The changes in Fe-S bond lengths were similar to that predicted by theoretical calculation, although some discrepancies were also found. Almost distances between the sulfur atoms of the iron-sulfur cluster and the protein environment are elongated upon the oxidation. Positional changes of hydrogen atoms in the protein environment, such as on the amide-hydrogen of Cys75 in the proximity of the iron-sulfur cluster, were also observed in the accurate analyses. None of the water molecules exhibited significant changes in position or anisotropy of atomic displacement parameter between the two states, while the orientations of some water molecules were differen

    Crystallographic characterization of the high-potential iron-sulfur protein in the oxidized state at 0.8 A resolution

    No full text
    High-potential iron-sulfur protein (HiPIP) is a soluble electron carrier protein of photosynthetic bacteria with an Fe4S4 cluster. Although structural changes accompanying the electron transfer are important for understanding of the functional mechanism, the changes have not been clarified in sufficient detail. In the present study, we performed a crystallographic analysis of oxidized HiPIP and a structural comparison with the reduced form at a high resolution of 0.8 Å. The changes in Fe-S bond lengths were similar to that predicted by theoretical calculation, although some discrepancies were also found. Almost distances between the sulfur atoms of the iron-sulfur cluster and the protein environment are elongated upon the oxidation. Positional changes of hydrogen atoms in the protein environment, such as on the amide-hydrogen of Cys75 in the proximity of the iron-sulfur cluster, were also observed in the accurate analyses. None of the water molecules exhibited significant changes in position or anisotropy of atomic displacement parameter between the two states, while the orientations of some water molecules were different

    Crystal structures of HiPIP at 0.8 Å.

    No full text
    <p>(A) Differences between the reduced and oxidized forms. The structures in the oxidized and reduced states are superimposed and represented in orange and green, respectively. Hydrogen atoms are omitted from the figure for clarity. (B) Multi-conformational residues in the oxidized and reduced states are represented as orange and green sticks, respectively. Depth of colors reflects the occupancy of each conformation at the residue. Single-conformational residues and the iron-sulfur cluster are represented as gray tubes and sticks, respectively.</p
    corecore