129 research outputs found

    Effects of preservation period of fertilized eggs and high concentrations of nitrogen in nutrient sources on germling growth of Sargassum horneri

    Get PDF
    The effects of high concentrations of nitrogen sources on the germling growth of Sargassum horneri were investigated for the restoration of coastal barren ground using fertilization materials containing high concentrations of nitrogen. Moreover, the safekeeping period of fertilized eggs of S. horneri was studied to elucidate performance stability as an appropriate method using fertilized eggs. The fertilized eggs of S. horneri that had been preserved in a refrigerator for approximately 170 days were able to grow and demonstrate the same growth curve as those that had been preserved for shorter periods. This demonstrates that our culture method can be applied to examine the effects of nitrogen sources on the germling growth of S. horneri. The addition of over 2 mg N L−1 of ammonium (NH4–N) or nitrite (NO2–N) clearly inhibited growth, and the addition of 50 mg N L−1 of NH4–N or NO2–N had lethal effects on the germling growth of S. horneri. The addition of 1 mg N L−1 of NH4–N or NO2–N did not clearly promote or inhibit growth. The addition of 50 mg N L−1of nitrate (NO3–N) did not inhibit growth. It is expected that the effects of NH4–N or NO2–N on seaweed growth depends on the concentration level, growth stage of the seaweed, and seaweed species. On the basis of our results, nitrogen fertilizers that contain high concentrations of some nitrogen sources should be carefully considered before they are applied to restore barren ground in nutrient-deficient coastal areas. © 2016 Springer Science+Business Media DordrechtEmbargo Period 12 month

    Properties of Composite Electrodes for All-solid-state Fluoride-ion Secondary Batteries Processed by High-pressure Torsion

    Get PDF
    All-solid-state fluoride-ion batteries (FIBs) using metal/metal fluorides are expected to be the next generation of storage batteries because they exhibit high volumetric energy densities by utilizing multielectron reactions, compared to the current lithium-ion batteries. However, method of fabricating a composite electrode for all-solid-state fluoride-ion batteries has not yet been established. A fabrication method for a composite electrode that disperses the active material and solid electrolyte is required. To approach this problem, in this study, we employed a high-pressure torsion (HPT) method, in which an active material, solid electrolyte, and conductive agent can be mixed with size reduction, as a new process and prepared Cu (active material)/PbSnF₄ (solid electrolyte)/acetylene black (conductive agent) cathode composites. The crystalline sizes of Cu and PbSnF₄ were significantly reduced. The apparent grain boundary resistance was also reduced owing to the more homogeneous distribution in the cathode composites after HPT processing. These structural and morphological changes led to high electrochemical performances, compared to a cathode composite without HPT

    Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure

    Get PDF
    Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvitamin D, and 25-hydroxyvitamin D in nondialyzed patients with chronic renal failure.BackgroundIn patients with chronic renal failure (CRF), abnormalities in vitamin D metabolism are known to be present, and several factors could contribute to the abnormalities.MethodsWe measured serum levels of three vitamin D metabolites, 1,25(OH)2D, 24,25(OH)2D and 25(OH)D, and analyzed factors affecting their levels in 76 nondialyzed patients with CRF (serum creatinine> 1.6 and < 9.0 mg/dl), 37 of whom had diabetes mellitus (DM-CRF) and 39 of whom were nondiabetic (nonDM-CRF).ResultsSerum levels of 1,25(OH)2D were positively correlated with estimated creatinine clearance (CCr; r = 0.429; P < 0.0001), and levels of 24,25(OH)2D were weakly correlated with CCr (r = 0.252, P < 0.05); no correlation was noted for 25(OH)D. Serum levels of all three vitamin D metabolites were significantly and positively correlated with serum albumin. Although there were no significant differences in age, sex, estimated CCr, calcium and phosphate between DM-CRF and nonDM-CRF, all three vitamin D metabolites were significantly lower in DM-CRF than in nonDM-CRF. To analyze factors influencing vitamin D metabolite levels, we performed multiple regression analyses. Serum 25(OH)D levels were significantly and independently associated with serum albumin, presence of DM and serum phosphate (R2 = 0.599; P < 0.0001). 24,25(OH)2D levels were significantly and strongly associated with 25(OH)D (β; = 0.772; R2 = 0.446; P < 0.0001). Serum 1,25(OH)2D levels were significantly associated only with estimated CCr (R2 = 0.409; P < 0.0001).ConclusionsThese results suggest that hypoalbuminemia and the presence of DM independently affect serum 25(OH)D levels, probably via diabetic nephropathy and poor nutritional status associated with diabetes, and that 25(OH)D is actively catalyzed to 24,25(OH)2D in CRF, probably largely via extrarenal 24-hydroxylase. Serum levels of 1,25(OH)2D were significantly affected by the degree of renal failure. Thus, this study indicates that patients with CRF, particularly those with DM, should receive supplements containing the active form of vitamin D prior to dialysis

    Five-minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai-ichi Nuclear Power Plant

    Get PDF
    AbstractThe spatial distributions of radiocesium concentration in sea sediment to a core depth of 14 cm were investigated in the offshore region from the Fukushima Prefecture to the northern part of the Ibaraki Prefecture in February and July 2012, at a spatial resolution of 5 min of latitude and longitude. The concentrations in the area south of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) were generally higher than those in the area north of it. In the southern area, a band of especially high concentration with a width about 20 km was present in the region shallower than 100 m, and a narrow minimal concentration band was found along the 200-m isobaths. In more than half of all cases, the vertical core profiles of radiocesium concentration generally showed an exponential decreasing trend with depth. However, in the area north of the FDNPP, where the radiocesium concentrations tended to be very low, radiocesium concentrations that had similar or larger magnitude compared with those of the most-surface layer were often found in deeper layers. Relatively good correlations were found between radiocesium concentrations and grain sizes of the most-surface sediment. The vertical profile of radiocesium concentration also had a relationship with grain size. In other case, the radiocesium concentration in the sediment seems to have had a dependence on the radiocesium concentration in bottom seawater, suggesting that the quantity of radiocesium supplied and the grain size were major factors determining the spatial distribution pattern of the radiocesium concentration after the FDNPP accident

    Search for Outer Massive Bodies around Transiting Planetary Systems: Candidates of Faint Stellar Companions around HAT-P-7

    Full text link
    We present results of direct imaging observations for HAT-P-7 taken with the Subaru HiCIAO and the Calar Alto AstraLux. Since the close-in transiting planet HAT-P-7b was reported to have a highly tilted orbit, massive bodies such as giant planets, brown dwarfs, or a binary star are expected to exist in the outer region of this system. We show that there are indeed two candidates for distant faint stellar companions around HAT-P-7. We discuss possible roles played by such companions on the orbital evolution of HAT-P-7b. We conclude that as there is a third body in the system as reported by Winn et al. (2009, ApJL, 763, L99), the Kozai migration is less likely while planet-planet scattering is possible.Comment: 8 pages, 3 figures, 2 tables, PASJ in pres
    corecore