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catalyzed to 24,25(OH)2D in CRF, probably largely via extrare-Serum levels of 1,25-dihydroxyvitamin D, 24,25-dihydroxyvita-
nal 24-hydroxylase. Serum levels of 1,25(OH)2D were signifi-min D, and 25-hydroxyvitamin D in nondialyzed patients with
cantly affected by the degree of renal failure. Thus, this studychronic renal failure.
indicates that patients with CRF, particularly those with DM,Background. In patients with chronic renal failure (CRF),
should receive supplements containing the active form of vita-abnormalities in vitamin D metabolism are known to be pres-
min D prior to dialysis.ent, and several factors could contribute to the abnormalities.

Methods. We measured serum levels of three vitamin D
metabolites, 1,25(OH)2D, 24,25(OH)2D and 25(OH)D, and an-
alyzed factors affecting their levels in 76 nondialyzed patients In chronic renal failure (CRF), one of the most markedwith CRF (serum creatinine . 1.6 and , 9.0 mg/dl), 37 of

abnormalities in electrolyte metabolism is an imbalancewhom had diabetes mellitus (DM-CRF) and 39 of whom were
of calcium and phosphate, the metabolism of which isnondiabetic (nonDM-CRF).

Results. Serum levels of 1,25(OH)2D were positively corre- strongly affected by vitamin D and parathyroid hormone
lated with estimated creatinine clearance (CCr; r 5 0.429; P , (PTH). Calcium and phosphate metabolism is closely
0.0001), and levels of 24,25(OH)2D were weakly correlated related to bone metabolism, and their metabolic abnor-with CCr (r 5 0.252, P , 0.05); no correlation was noted for

malities in CRF are associated with the emergence of25(OH)D. Serum levels of all three vitamin D metabolites
renal osteodystrophy. This abnormality occurs as earlywere significantly and positively correlated with serum albu-

min. Although there were no significant differences in age, sex, as the decline of glomerular filtration rate to 70 ml/
estimated CCr, calcium and phosphate between DM-CRF and min and progresses as renal function deteriorates [1–4].
nonDM-CRF, all three vitamin D metabolites were signifi- Serum levels of vitamin D metabolites are affected bycantly lower in DM-CRF than in nonDM-CRF. To analyze

several factors, such as calcium, phosphate, PTH, aging,factors influencing vitamin D metabolite levels, we performed
seasons, renal function and intestinal absorption [1–3, 5].multiple regression analyses. Serum 25(OH)D levels were sig-

nificantly and independently associated with serum albumin, In CRF, these factors are interrelated. Although serum
presence of DM and serum phosphate (R2 5 0.599; P , 0.0001). levels of the active form of vitamin D are known to be
24,25(OH)2D levels were significantly and strongly associated decreased in CRF [1–4,6–17], there are relatively fewwith 25(OH)D (b 5 0.772; R2 5 0.446; P , 0.0001). Serum

studies in which serum levels of the vitamin D metabo-1,25(OH)2D levels were significantly associated only with esti-
lites have been examined in a large number of nondia-mated CCr (R2 5 0.409; P , 0.0001).

Conclusions. These results suggest that hypoalbuminemia lyzed patients with CRF [18–21]. Recently, in both devel-
and the presence of DM independently affect serum 25(OH)D oped and developing countries, nephropathy caused by
levels, probably via diabetic nephropathy and poor nutritional diabetes mellitus (DM) has become one of the moststatus associated with diabetes, and that 25(OH)D is actively

frequent causes of CRF. In diabetes, abnormalities in
vitamin D metabolism have been reported [22–29]. Un-
der the complicated conditions of CRF, several factorsKey words: vitamin D, hypoalbuminemia, diabetes mellitus, electrolyte

metabolism, renal osteodystrophy. could contribute to abnormalities in vitamin D metabo-
lism.Received for publication April 22, 1998
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Table 1. Clinical characteristics and serum levels of three vitamindroxyvitamin D [1,25 (OH)2D], in nondialyzed patients
D metabolites of patients with renal failure due to non-

with CRF and analyzed factors affecting their serum diabetic renal diseases (NonDM-CRF) and due to
diabetic nephropathy (DM-CRF)levels, particularly the presence of DM.

NonDM-CRF DM-CRF P

Age years 58612 58611 NSMETHODS
Male/female 29/10 21/16 NS

Patients Body weight kg 61.4611.6 57.668.9 NS
Body mass index kg/m2 24.364.5 23.063.0 NSAll 76 nondialyzed patients with CRF (serum creati- Serum creatinine mg/dl 3.661.7 3.661.8 NS

nine . 1.6 and , 9.0 mg/dl) examined in this study visited Estimated CCr ml/min 21.969.1 21.4611.0 NS
Blood urea nitrogen mg/dl 50620 45615 NSthe outpatient clinics of either Osaka City University
Corrected calcium mg/dl 9.060.4 9.160.6 NSHospital or Shirasagi Hospital Kidney Center once or Phosphate mg/dl 4.261.0 4.260.8 NS

twice a month. CRF in 37 patients (21 males and 16 Serum albumin g/dl 3.960.5 3.260.6 ,0.005
PTH pg/ml 125689 122678 NSfemales) was due to long-term type II DM (DM-CRF;
Fasting blood glucose mg/dl 93613 149665 ,0.001

mean duration 6 sd 17 6 6 years, range 9 to 28 years). Hemoglobin A1C % — 7.461.9
Urinary protein 1/11/111 17/13/9 2/8/27 ,0.001Patients with diabetes were treated with oral hypoglyce-
25(OH)D ng/ml 22.369.4 11.465.6 ,0.0001mic agents (N 5 18), insulin (N 5 7), or diet therapy
24,25(OH)2D ng/ml 0.7460.46 0.4460.20 ,0.001

only (N 5 12). All DM-CRF patients were instructed to 1,25(OH)2D pg/ml 21.9610.3 15.566.4 ,0.002
have a food intake of 30 to 35 kcal/ideal body weight/ 25(OH)D, 25-hydroxyvitamin D; 24,25(OH)2D, 24,25-dihydroxyvitamin D;

1,25(OH)2D, 1,25-dihydroxyvitamin D; estimated CCr (creatinine clearance) wasday. CRF in the remaining 39 patients (29 males and
calculated according to Cockroft and Gault, relying on serum creatinine, body10 females) was due to other causes (nonDM-CRF), weight, age and sex; corrected calcium is calculated by a formula considering
the concentration of serum albumin as described in the text; PTH, parathyroidincluding chronic glomerulonephritis (N 5 22), hyper-
hormone; NS, not significant. Data are expressed as mean 6 sd.tension (N 5 7), polycystic kidney disease (N 5 2) and

renal disease of unknown cause but not associated with
DM (N 5 8), according to medical records. None of the
patients was taking vitamin D, phosphate binders, or cording to Cockroft and Gault, factoring in serum creati-
medications that affect vitamin D metabolism, such as nine, body weight, and age [32–35] in the following for-
barbiturates or lithium. Patients with liver diseases were mula:
excluded from the study. During regular medical check-

estimated CCr [ml/min]ups performed in the morning around 9:00 to 10:00 a.m.
5 {(140 2 age)/serum creatinine [mg/dl]}between October 1996 and January 1997, urine was col-

3 {body weight [kg]}/72lected and blood was drawn. Levels of urinary protein
were estimated by a dye-impregnated paper strip For women, 15% of the value was subtracted [32, 33].
method, in which 1, 1 1, and 1 1 1 levels represented The clinical characteristics of nonDM-CRF and DM-
urinary protein levels of approximately 30 to 100 mg/dl, CRF patients are summarized in Table 1.
100 to 300 mg/dl, and .300 mg/dl, respectively. After

Extraction and assay of the threeserum was separated, 2 ml was frozen and stored at
vitamin D metabolites2408C, and levels of 25(OH)D, 24,25(OH)2D and

1,25(OH)2D were measured. The rest of the serum was The three vitamin D metabolites were extracted and
used to measure levels of creatinine, albumin, calcium, assayed for their serum levels by Mitsubishi Kagaku Bio-
phosphate and parathyroid hormone (PTH). Serum cre- Chemical Laboratory (Tokyo, Japan). The methods are
atinine, albumin, calcium and phosphate were measured described in detail in a previous report [36]. In brief,
by an autoanalyzer. Serum calcium concentrations were 2000 dpm of 1,25(OH)2 [3H]D3, 24,25(OH)2 [3H]D3, and
corrected to a serum albumin level of 4.0 g/dl according 25(OH) [3H]D3 in 20 ml of ethanol was added to 1.0 ml
to the following formula [10, 22, 30]: of serum. The samples were then mixed with 1.0 ml

of 0.1 n HCl and applied to a Sep Pak tC18 cartridgecorrected Ca [mg/dl]
(Millipore, Milford, MA, USA). Lipid extracts con-5 (4.0 2 albumin [g/dl])1 Ca [mg/dl]
taining vitamin D metabolites were automatically eluted

Serum concentrations of PTH were measured with a kit with 6 ml of acetonitrile. After the elutes evaporated,
(Allegro intact PTH kit; Japan MediPhysics Inc., Tokyo, the samples were resuspended in toluene/ethanol (liter/
Japan) that recognizes an intact molecule of PTH [31]. liter) and stored at 2808C until assayed.
The reference range of PTH in healthy subjects was 10 Samples were dried under nitrogen and resuspended
to 65 pg/ml. Hemoglobin A1C of diabetic patients was in 300 ml of methanol/isopropanol/N-hexane (1/6/93).
measured by high performance liquid chromatography. Vitamin D metabolites were separated by high pressure

liquid chromatography (HPLC) [37] with a model 0.46 3In men, creatinine clearance (CCr) was estimated ac-
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Table 2. Correlations between clinical parameters and30.0 cm ASP-Hypersil NH2 column (Shandon, Cheshire,
each vitamin D metabolite

UK). The column was eluted and 4-ml fractions were
25(OH)D 24,25(OH)2D 1,25(OH)2Dcollected. Absorbance was measured at a wavelength of
r P r P r P264 nm. After each vitamin D metabolite was separated,

levels of 25(OH)D and 24,25(OH)2D were determined Age NS NS NS
Body weight NS NS NSby an established competitive protein binding assay using
Estimated CCr NS 0.252 0.0391 0.429 0.0001vitamin D-deficient rat serum [38]. 1,25(OH)2D levels
Corrected calcium NS NS NS

were determined by radioreceptor assay [39], using vita- Phosphate 20.296 0.0105 20.260 0.0252 20.406 0.0003
Serum albumin 0.605 0.0001 0.229 0.0477 0.440 0.0001min D receptor extract from bovine thymus (Yamasa
PTH NS 20.237 0.0463 NSShoyu, Choushi, Japan). According to the company’s
24,25(OH)2D 0.694 0.0001 — NS

documents, serum levels of 25(OH)D, 24,25(OH)2D and 1,25(OH)2D 0.468 0.0001 NS —
1,25(OH)2D in healthy controls are 15.8 6 6.0 ng/ml, Abbreviations are: CCr, creatinine clearance; 25(OH)D, 25-hydroxyvitamin D;

24,25(OH)2D, 24,25-dihydroxyvitamin D; 1,25(OH)2D, 1,25-dihydroxyvitamin D;1.03 6 0.56 ng/ml, and 29.0 6 10.0 pg/ml, respectively.
r, correlation coefficient; NS, not significant; corrected calcium is calculated by
a formula considering the concentration of serum albumin as described in the

Statistical analysis text; PTH, parathyroid hormone.

Statistical analysis was performed with the Stat View
IV system designed for the Macintosh computer. All
data are expressed as mean 6 sd. Student’s t-test and

Correlations between each vitamin D metabolite andchi-square test were performed for comparison of DM-
clinical parameters were examined (Table 2). The degreeCRF and nonDM-CRF. Correlation and linear regres-
of renal failure was assessed by estimated CCr rather thansion analyzes were performed to examine the relation-
serum creatinine, since estimated CCr values are moreship between each vitamin D metabolite and clinical
closely related to glomerular filtration rate than are se-parameters, including age, body weight, estimated CCr,
rum creatinine levels. Effects of age, body weight andcorrected calcium, phosphate, serum albumin, and serum
gender on serum creatinine are minimized in the formulaPTH. Multiple regression analyzes were performed to
used to calculate estimated CCr [32–35]. Although thereassess the combined influence of clinical variables on
was no significant correlation between serum 25(OH)Dserum levels of each vitamin D metabolite. Presence of
and estimated CCr, there was a significant, positive associ-DM was represented by dummy variables (0, absence;
ation between serum 1,25(OH)2D and estimated CCr (r 51, presence) in multiple regression analyzes.
0.429, P , 0.0001). There was also a significant, positive
correlation between serum 24,25(OH)2D and estimated

RESULTS CCr (r 5 0.252, P , 0.05), although the relationship was
far weaker than that between serum 1,25(OH)2D andThe mean serum level of 25(OH)D in the entire cohort
estimated CCr. Correlations between each vitamin D me-was 16.9 6 9.4 ng/ml, which was not significantly different
tabolite and estimated CCr are shown in Figure 1. Al-from the reference range for healthy controls. The mean
though there were no significant associations betweenserum level of 24,25(OH)2D was 0.59 6 0.38 ng/ml, which
serum corrected calcium levels and each vitamin D me-was significantly lower than the reference range for
tabolite, there were significant, negative correlations be-healthy controls (P , 0.01). The mean serum level of
tween serum phosphate levels and each vitamin D me-1,25(OH)2D was 18.8 6 9.2 pg/ml, which was significantly
tabolite. There were also significant, positive correlationslower than the reference range for healthy controls
between serum albumin and each vitamin D metabolite.(P , 0.0001). Serum levels of the three vitamin D met-
With respect to interrelationships among the three vita-abolites in nonDM-CRF and DM-CRF are shown in
min D metabolites, there were strong, significant, posi-Table 1. Serum levels of 25(OH)D, 24,25(OH)2D and
tive relationships between 25(OH)D and 24,25(OH)2D1,25(OH)2D in DM-CRF were significantly lower than
and between 25(OH)D and 1,25(OH)2D. There was nothose in nonDM-CRF (P , 0.0001, P , 0.001 and P ,
significant correlation between age and each vitamin D0.002, respectively). There were no significant between-
metabolite.group differences in age, sex, body weight, body mass

Because the clinical parameters that correlated withindex, serum creatinine, estimated CCr, BUN, corrected
vitamin D metabolites were also interrelated, multiplecalcium, phosphate, and serum intact PTH, although se-
regression analyses were performed to assess the com-rum albumin and fasting blood glucose were significantly
bined influence of these factors on serum levels of thelower in DM-CRF than nonDM-CRF (P , 0.005 and
three vitamin D metabolites. A model including serumP , 0.001, respectively). Semiquantitative assessment of
albumin, presence of DM, phosphate, estimated CCr andurinary protein revealed significantly higher levels in
serum PTH as independent variables was used to analyzeDM-CRF patients than in nonDM-CRF patients (P ,

0.001). the combined influence of these factors on serum
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Fig. 1. Relationship between vitamin D metabolites and estimated creatinine clearance (CCr). There was a significant, positive correlation between
1,25(OH)2D and estimated CCr (r 5 0.429, P , 0.0001). There was also a significant correlation between 24,25(OH)2D and estimated CCr (r 5
0.252, P , 0.05), although the relationship was weaker than that between 1,25(OH)2D and estimated CCr. There was no significant correlation
between 25(OH)D and estimated CCr.

25(OH)D levels. Each of these independent variables lase, which is mostly located in the mitochondria of the
proximal tubules [1–3, 15, 41]. There have been relativelyhad a significant correlation with at least one of the
few reports on serum 24,25(OH)2D levels in patientsvitamin D metabolites. In multiple regression analysis
with CRF. Koenig et al reported that in nondialyzedusing serum 24,25(OH)2D and 1,25(OH)2D levels as de-
patients with CRF, levels of 24,25(OH)2D were signifi-pendent variables, serum level of 25(OH)D was added
cantly lower than those of healthy subjects [18]. In theas an independent variable, since 25(OH)D is a substrate
present study, serum levels of 24,25(OH)2D in nondia-for 24,25(OH)2D and 1,25(OH)2D (Table 3). Serum lev-
lyzed patients with CRF were significantly lower thanels of 25(OH)D were significantly associated with serum
those of healthy controls, and there was a weak relation-albumin, presence of DM and phosphate as independent
ship between serum 24,25(OH)2D and estimated CCr,variables in order of importance (R2 5 0.599, P , 0.0001),
which is consistent with the report by Koenig et al. How-although estimated CCr and PTH were not significantly
ever, in contrast to the significant, relatively strong, posi-associated with 25(OH)D levels. Serum levels of
tive correlation seen between serum 1,25(OH)2D levels24,25(OH)2D were significantly, strongly, and positively
and estimated GFR, the correlation between serumassociated with serum 25(OH)D (b 5 0.752, P , 0.0001)
24,25(OH)2D levels and estimated GFR was far weaker.and serum albumin (R2 5 0.446, P , 0.0001), although
Compared to 25(OH)D 1a-hydroxylase, which is mostlynot with PTH, estimated CCr, phosphate or presence of
localized in the kidney, 25(OH)D 24-hydroxylase is lo-DM. Serum levels of 1,25(OH)2D correlated significantly
calized not only in the kidney but also to a large extentonly with estimated CCr (R2 5 0.409, P , 0.0001) and
in other parts of the body such as the intestines andnot with serum albumin, 25(OH)D, phosphate, presence
bones [5, 7, 42–45]. In CRF, extrarenal metabolism ofof DM, or PTH.
vitamin D is reportedly increased by extrarenal
25(OH)D 1a-hydroxylase and 25(OH)D 24-hydroxylase

DISCUSSION activity [5, 7, 8, 12, 19, 20, 40, 42, 46–48], which is known
In this study, we measured serum levels of three to be present in macrophages, skin, bones, and other

vitamin D metabolites, 25(OH)D, 24,25(OH)2D and tissues [8, 12, 47, 48]. Considering the far weaker correla-
1,25(OH)2D, in nondialyzed CRF patients and analyzed tion between 24,25(OH)2D levels and estimated CCr de-
factors associated with their serum levels. As previously spite the presence of a relatively stronger significant cor-
reported, we found normal serum levels of 25(OH)D in relation between 1,25(OH)2D levels and estimated GFR
these patients and reduced serum levels of 1,25(OH)2D in the present study, it is suggested that a relatively
[1–3, 10, 15, 18, 40]. There was a significant, positive larger amount of extrarenal 25(OH)D 24-hydroxylase is
correlation between serum 1,25(OH)2D levels and esti- present or activated than that of extrarenal 25(OH)D
mated CCr. These results are consistent with previous 1a-hydroxylase under conditions of renal mass reduction
reports in which serum levels of 1,25(OH)2D decreased in CRF.

Impairment of vitamin D metabolism has been re-as renal mass declined in patients with CRF [1–3, 15,
18, 40]. Decreased renal mass and uremic factors are ported to be present in diabetic animal models such as

rats with streptozotocin-induced diabetes, BB rats andbelieved to reduce the activity of 25(OH)D 1a-hydroxy-
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Table 3a. Factors affecting serum levels of 25-hydroxyvitamin D (25(OH)D) (Multiple regression analysis)

Variables

Dependent Independent b P

25(OH)D Serum albumin 0.468 , 0.0001
Presence of DM 20.369 0.0002
Phosphate 20.201 0.0397
Estimated CCr 20.035 0.7232
PTH 0.020 0.8318 R2 5 0.599 (P , 0.0001)

Table 3b. Factors affecting serum levels of 24,25-dihydroxyvitamin D [24,25(OH)2D] (Multiple regression analysis)

Variables

Dependent Independent b P

24,25(OH)2D 25(OH)D 0.772 , 0.0001
Serum albumin 0.322 0.0185
PTH 20.170 0.1257
Estimated CCr 0.157 0.1770
Phosphate 0.079 0.5030
Presence of DM 20.055 0.6567 R2 5 0.466 (P , 0.0001)

Table 3c. Factors affecting serum levels of 1,25-dihydroxyvitamin D [1,25(OH)2D] (Multiple regression analysis)

Variables

Dependent Independent b P

1,25(OH)2D Estimated CCr 0.332 0.0031
Serum albumin 0.248 0.0868
25(OH)D 20.192 0.2173
Phosphate 20.143 0.2414
Presence of DM 20.096 0.4494
PTH 0.026 0.8191 R2 5 0.409 (P , 0.0001)

Abbreviations are: CCr, creatinine clearance; DM, diabetes mellitus; PTH, parathyroid hormone; b, standard regression; R2, multiple coefficient of determination.

GK rats [23, 24, 26, 28, 49]. In these animal models, in nonDM-CRF. Considering that vitamin D metabolites
25(OH)D 1a-hydroxylase and 24-hydroxylase activities are mostly bound to vitamin D-binding proteins, whose
appear to be impaired [23, 24, 50]. In human studies, serum levels are closely associated with serum albumin
however, different results with respect to serum levels levels [1–3, 53], serum albumin may be strongly associ-
of 25(OH)D, 24,25(OH)2D and 1,25(OH)2D have been ated with serum levels of vitamin D metabolites. Signifi-
reported; specifically, serum levels of vitamin D metabo- cant positive correlations between serum albumin and
lites differ between diabetics and control subjects [25, the three vitamin D metabolites in our study also support
27–29, 51]. Reduced serum levels of 1,25(OH)2D in dia- this speculation. The more exaggerated hypoalbumi-
betics were reported in some studies but not in others. nemia in DM-CRF in the present study was presumably
While these studies examined subjects with normal renal caused primarily by significantly higher excretion of uri-
function, there have been few reports in which vitamin

nary protein. Furthermore, other factors such as malnu-
D metabolite levels were examined in patients with DM-

trition in DM-CRF may contribute to hypoalbuminemia.CRF [13, 52]. In our study, all three vitamin D metabolite
Hemoglobin levels, one of the indices of nutritional status,levels were significantly lower in DM-CRF than in
were lower in DM-CRF than in nonDM-CRF (10.4 6nonDM-CRF, despite the fact that there were no signifi-
1.6 g/dl vs. 11.2 6 1.9 g/dl, P , 0.05) even though somecant differences in age, sex, body weight, corrected cal-
patients with anemia in both the DM-CRF and nonDM-cium, phosphate or PTH levels. Our results contradict
CRF groups were receiving erythropoietin therapy, asthose of Lu et al [13], which showed no significant differ-
we recently reported [54]. Therefore, the significantlyence in serum 25(OH)D and 1,25(OH)2D between DM-
lower serum levels of all three vitamin D metabolites inCRF and nonDM-CRF, although 25(OH)D levels had
DM-CRF than in nonDM-CRF in our study may havea tendency to be lower in DM-CRF. In our study, serum

albumin levels were significantly lower in DM-CRF than been caused by significantly decreased serum albumin
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levels in DM-CRF, which is characterized by significantly tration, suggesting increased extrarenal activity of
25(OH)D 24-hydroxylase. Furthermore, our results sug-higher excretion of urinary protein and malnutrition.

By linear regression analysis, we found several signifi- gest that extrarenal 25(OH)D 24-hydroxylase actively
catalyzes vitamin D in CRF where both renal 25(OH)Dcant correlations between levels of each vitamin D me-

tabolite and clinical parameters. This led us to apply 24-hydroxylase and 1a-hydroxylase activities are appar-
ently reduced [18, 19, 46, 61, 62]. In multiple regressionmultiple regression analysis to determine the combined

influence of various factors on serum levels of each vita- analysis of 1,25(OH)2D levels, as seen in linear regression
analysis, 1,25(OH)2D levels were strongly and signifi-min D metabolite. In multiple regression analysis to de-

termine factors affecting 25(OH)D levels, which repre- cantly associated only with estimated CCr, and not with
25(OH)D levels, phosphate, presence of DM, serum al-sent the nutritional status of vitamin D [1–3, 5, 15, 55],

the presence of DM was significantly and independently bumin and PTH (Table 3c). Although 1,25(OH)2D levels
are affected by PTH, calcium, phosphate and 25(OH)Dassociated with serum levels of 25(OH)D in addition

to serum albumin (Table 3a). This indicates that the levels in normal renal function [1–3, 15, 55], the present
study showed that none of these factors had a significantpresence of DM is an independent risk factor for reduced

25(OH)D levels. The mean 25(OH)D level of 11.4 6 5.6 influence on 1,25(OH)2D levels in CRF. The results also
suggest that renal 25(OH)D 1a-hydroxylase activity,ng/ml in DM-CRF patients was significantly lower than

that of healthy subjects (P , 0.005), which suggests that which is decreased due to reduced renal mass, is still a
major regulatory factor that determines serum levels ofthese patients have vitamin D deficiency [5, 6, 34, 55–58].

Serum 25(OH)D levels are affected by sunlight, liver 1,25(OH)2D in CRF, even though extrarenal 25(OH)D
1a-hydroxylase activity can be activated in this conditionfunction and intestinal absorption of vitamin D [1–3, 15,

55]. In our study, serum samples were collected over a [8, 12, 15, 40, 47, 48]. In this study, it was unclear whether
free 1,25(OH)2D and free 25(OH)D unbound to vitaminrelatively short time from late autumn to winter, and

patients with liver dysfunction were excluded. We specu- D-binding protein were reduced. In recent studies by
Boonen et al [34, 35], both total and free 25(OH)D levelslate that one of the reasons for the independent and

significant association between the presence of DM and were significantly lower in osteoporotic elderly patients
with significantly reduced vitamin D-binding protein and25(OH)D levels involved dietary habits of diabetics.

These patients were instructed to avoid excessive food without renal failure than in individuals without osteopo-
rosis, although there was a significant decrease in total(30 to 35 kcal/ideal body weight/day), particularly foods

containing a large amount of fat in which vitamin D can 1,25(OH)2D but not free 1,25(OH)2D. The results sug-
gest that serum levels of free 25(OH)D, a metabolicbe dissolved, in order to control their blood sugar levels,

a practice which may lead to decreased vitamin D intake. precursor that has little hormonal function, are not
tightly or feedback controlled, and are independent ofWe speculate that another contributing factor may have

been impaired intestinal absorption of vitamin D in dia- the free/total ratio of 1,25(OH)2D, which acts as a tightly
regulated hormone. Thus, low 25(OH)D levels in pa-betic patients, since patients with advanced diabetic ne-

phropathy often have gastroenteropathy associated with tients in the present study suggest the presence of hypovi-
taminosis D. However, since serum concentrations ofdiabetic autonomic neuropathy [59, 60]. Furthermore,

diabetic patients with nephropathy may be sicker than total and free 1,25(OH)2D decrease with a high degree
of correlation as renal function declines in CRF patientsnonDM-CRF patients in terms of hypoalbuminemia

(more frequent presence of nephrotic syndrome), lead- and free 1,25(OH)2D falls as glomerular filtration rate
decreases in nephrotic patients [18], the reduced levelsing to less outside activity and sunlight exposure neces-

sary for synthesizing vitamin D; however, outside activity of total 1,25(OH)2D in our study may reflect reduced
free 1,25(OH)2D levels, leading to a deficiency in thewas not assessed in the present study. Multiple regression

analysis to evaluate serum levels of 24,25(OH)2D demon- active form of vitamin D in CRF.
In the present study, PTH levels in DM-CRF patientsstrated that 24,25(OH)2D levels were strongly and posi-

tively associated with 25(OH)D. 25(OH)D 24-hydroxy- were not significantly different from those of nonDM-
CRF patients. Among patients receiving hemodialysislase is reported to be activated by an excessive amount

of 25(OH)D and represents the catabolic pathway of or peritoneal dialysis, PTH levels have been reported
to be lower in those with diabetes than those without;vitamin D [1–3, 15, 19]. Even though renal 25(OH)D

24-hydroxylase activity may be reduced in chronic renal however, few studies have compared the effect of diabe-
tes on PTH levels in predialysis patients with renal failurefailure [18, 61], the results of the present study suggest
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