102 research outputs found
Scintillating double beta decay bolometers
We present the results obtained in the development of scintillating Double
Beta Decay bolometers. Several Mo and Cd based crystals were tested with the
bolometric technique. The scintillation light was measured through a second
independent bolometer. A 140 g CdWO_4 crystal was run in a 417 h live time
measurement. Thanks to the scintillation light, the alpha background is easily
discriminated resulting in zero counts above the 2615 keV gamma line of
Thallium 208. These results, combined with an extremely easy light detector
operation, represent the first tangible proof demonstrating the feasibility of
this kind of technique.Comment: 15 pages, 8 figure
The role of Auger recombination in the temperature-dependent output characteristics (T0=∞)(T0=∞) of pp-doped 1.3 μm quantum dot lasers
Temperature invariant output slope efficiency and threshold current (T0=∞)(T0=∞) in the temperature range of 5–75 °C have been measured for 1.3 μm pp-doped self-organized quantum dot lasers. Similar undoped quantum dot lasers exhibit T0=69 KT0=69 K in the same temperature range. A self-consistent model has been employed to calculate the various radiative and nonradiative current components in pp-doped and undoped lasers and to analyze the measured data. It is observed that Auger recombination in the dots plays an important role in determining the threshold current of the pp-doped lasers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71264/2/APPLAB-85-22-5164-1.pd
Modelocked quantum dot vertical external cavity surface emitting laser
We report the first successful modelocking of a vertical external cavity surface emitting laser (VECSEL) with a quantum dot (QD) gain region. The VECSEL has a total of 35 QD-layers with an emission wavelength of about 1060 nm. In SESAM modelocked operation, we obtain an average output power of 27.4 mW with 18-ps pulses at a repetition rate of 2.57 GHz. This QD-VECSEL is used as-grown on a 450 μm thick substrate, which limits the average output powe
Narrow ridge waveguide high power single mode 1.3-μm InAs/InGaAs ten-layer quantum dot lasers
Ten-layer InAs/In0.15Ga0.85As quantum dot (QD) laser structures have been grown using molecular beam epitaxy (MBE) on GaAs (001) substrate. Using the pulsed anodic oxidation technique, narrow (2 μm) ridge waveguide (RWG) InAs QD lasers have been fabricated. Under continuous wave operation, the InAs QD laser (2 × 2,000 μm2) delivered total output power of up to 272.6 mW at 10 °C at 1.3 μm. Under pulsed operation, where the device heating is greatly minimized, the InAs QD laser (2 × 2,000 μm2) delivered extremely high output power (both facets) of up to 1.22 W at 20 °C, at high external differential quantum efficiency of 96%. Far field pattern measurement of the 2-μm RWG InAs QD lasers showed single lateral mode operation
The Influence of a Continuum Background on Carrier Relaxation in InAs/InGaAs Quantum Dot
We have investigated the ultra-fast carrier dynamics in Molecular Beam Epitaxy (MBE)-grown InAs/InGaAs/GaAs quantum dots (QDs) emitting at 1.3 μm by time resolved photoluminescence (TRPL) upconversion measurements with a time resolution of about 200 fs. Changing the detection energies in the spectral region from the energy of the quantum dots excitonic transition up to the barrier layer absorption edge, we have found that, under high excitation intensity, the intrinsic electronic states are populated mainly by carriers directly captured from the barrier
Vertical-external-cavity surface-emitting lasers and quantum dot lasers
The use of cavity to manipulate photon emission of quantum dots (QDs) has
been opening unprecedented opportunities for realizing quantum functional
nanophotonic devices and also quantum information devices. In particular, in
the field of semiconductor lasers, QDs were introduced as a superior
alternative to quantum wells to suppress the temperature dependence of the
threshold current in vertical-external-cavity surface-emitting lasers
(VECSELs). In this work, a review of properties and development of
semiconductor VECSEL devices and QD laser devices is given. Based on the
features of VECSEL devices, the main emphasis is put on the recent development
of technological approach on semiconductor QD VECSELs. Then, from the viewpoint
of both single QD nanolaser and cavity quantum electrodynamics (QED), a
single-QD-cavity system resulting from the strong coupling of QD cavity is
presented. A difference of this review from the other existing works on
semiconductor VECSEL devices is that we will cover both the fundamental aspects
and technological approaches of QD VECSEL devices. And lastly, the presented
review here has provided a deep insight into useful guideline for the
development of QD VECSEL technology and future quantum functional nanophotonic
devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with
arXiv:0904.369
Submonolayer Quantum Dots for High Speed Surface Emitting Lasers
We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission
Investigation of Semiconductor Quantum Dots for Waveguide Electroabsorption Modulator
In this work, we investigated the use of 10-layer InAs quantum dot (QD) as active region of an electroabsorption modulator (EAM). The QD-EAM is a p-i-n ridge waveguide structure with intrinsic layer thickness of 0.4 μm, width of 10 μm, and length of 1.0 mm. Photocurrent measurement reveals a Stark shift of ~5 meV (~7 nm) at reverse bias of 3 V (75 kV/cm) and broadening of the resonance peak due to field ionization of electrons and holes was observed for E-field larger than 25 kV/cm. Investigation at wavelength range of 1,300–1320 nm reveals that the largest absorption change occurs at 1317 nm. Optical transmission measurement at this wavelength shows insertion loss of ~8 dB, and extinction ratio of ~5 dB at reverse bias of 5 V. Consequently, methods to improve the performance of the QD-EAM are proposed. We believe that QDs are promising for EAM and the performance of QD-EAM will improve with increasing research efforts
- …