14 research outputs found
Towards a novel carbon device for the treatment of sepsis
Sepsis is a systemic inflammatory response to infection in which the balance of pro- andanti-inflammatory mediators, which normally isolate and eliminate infection, is disrupted[1]. Gram negative sepsis is initiated by bacterial endotoxin release which activatesmacrophages and circulating monocytes to release TNF and IL-1β followed by IL-6 andother inflammatory cytokines [2]. As the disease progresses, an unregulatedinflammatory response results in, tissue injury, haematological dysfunction and organdysfunction. Severe sepsis, involving organ hypoperfusion may be further complicatedby hypotension that is unresponsive to adequate fluid replacement, resulting in septicshock and finally death [3].Despite improvements in anti-microbial and supportive therapies, sepsis remains asignificant cause of morbidity and mortality in ICUs worldwide [4]. The complexity ofprocesses mediating the progression of sepsis suggests that an extracorporeal devicecombining blood filtration with adsorption of a wide range of toxins, and inflammatorymediators offers the most comprehensive treatment strategy. However, no such deviceexists at present. A novel, uncoated, polymer pyrolysed synthetic carbon device isproposed which combines the superior adsorption properties of uncoated activatedcarbons with the capacity to manipulate porous structure for controlled adsorption oftarget plasma proteins and polypeptides [5]. Preliminary haemocompatibility andadsorptive capacity was assessed using a carbon matrix prototype
The evaluation of novel activated carbons for artificial liver support
Paper evaluating novel activated carbons for artificial liver support
13 Smart polymers for bioseparation and other biotechnological applications
Abstract: The progress in development of a number of novel products using recombinant DNA technology and cell culturing, plus the demands for high product yield whilst preserving biological activity, require novel approaches for fast and cost-effective isolation and/or purification processes. Smart polymers (SPs) with their ability to undergo considerable changes in response to external stimuli make possible the development of novel technologies for isolation and purification. In this chapter the main applications of SPs in biotechnology and, in particular, in bioseparation, are discussed. Affinity precipitation, two-phase polymer separation, using SP membranes and SP chromatographic carriers are overviewed with a presentation of recent developments and discussion of future perspectives in these areas. Application of SP as catalysts is also discussed
Annihilation of the triplet excitons in the nanoporous glass matrices
Abstract The spectra and kinetics of fluorescence decay of 1,2-benzanthracene (1,2-BA) molecular clusters adsorbed in nanoporous borosilicate glasses were investigated. It has been shown that the type of the decay kinetics of delayed fluorescence is determined by the annihilation of triplet excitons in crystalline and percolation clusters. The influence of an external magnetic field on the annihilation rate constant of triplet excitons in the adsorbed 1,2-BA molecules has been studied. The response of the molecular clusters to the magnetic field strongly depends on temperature, pore size and time scale of the observation. Clusters with the crystal structure dominate in the decay kinetics of triplet–triplet annihilation (TTA) and delayed fluorescence in the initial microsecond period of time after excitation. Amorphous clusters determine the form of decay kinetics of delayed fluorescence in the millisecond range. The increase in the pore size and concentration of the adsorbate lead to the dominance of crystalline components. The results presented here can be used to develop techniques for probing the structure of the adsorbed layer in nanoporous systems examining the effect of an external magnetic field on the annihilation delayed fluorescence (ADF) kinetics
Development of an activated carbon-based system for combined plasmapheresis and adsorption in the treatment of sepsis
This paper looks at the development of an activated carbon-based system for combined plasmapheresis and adsorption in the treatment of sepsi