6 research outputs found
[1,2,5]Thiadiazolo[3,4-d]Pyridazine as an Internal Acceptor in the D-A-Ï€-A Organic Sensitizers for Dye-Sensitized Solar Cells
Four new D-A-π-A metal-free organic sensitizers for dye-sensitized solar cells (DSSCs), with [1,2,5]thiadiazolo[3,4-d]pyridazine as internal acceptor, thiophene unit as π-spacer and cyanoacrylate as anchoring electron acceptor, have been synthesized. The donor moiety was introduced into [1,2,5]thiadiazolo[3,4-d]pyridazine by nucleophilic aromatic substitution and Suzuki cross-coupling reactions, allowing design of D-A-π-A sensitizers with the donor attached to the internal heterocyclic acceptor not only by the carbon atom, as it is in a majority of DSSCs, but by the nitrogen atom also. Although low values of power conversion efficiency (PCE) were found, a few important consequences were identified: (i) poor PCE data can be attributed to high electron deficiency of the internal [1,2,5]thiadiazolo[3,4-d]pyridazine acceptor due to lower light harvesting by the dye; (ii) the manner in which the donor was attached to the internal acceptor (by carbon or nitrogen) did not play an essential role in the photovoltaic properties of the dyes; (iii) dyes based on the novel donor 2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazolyl and 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H- carbazole moieties showed similar photovoltaic properties to dyes based on the well-known 4-(p-tolyl)-1,2,3,3a,4,8b-hexahydrocyclopenta[b]indolyl building block, which opens the door for further optimization potential of new dye families
Novel D-A-Ï€-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline Donors for Dye-Sensitized Solar Cells
Two novel D-A-π-A1 metal-free organic dyes of the KEA series containing benzo[d][1,2,3]thiadiazole (isoBT) internal acceptor, indoline donors fused with cyclopentane or cyclohexane rings (D), a thiophene as a π-spacer, and a cyanoacrylate as an anchor part were synthesized. Monoarylation of 4,7-dibromobenzo[d][1,2,3]thiadiazole by Suzuki-Miyamura cross-coupling reaction showed that in the case of indoline and carbazole donors, the reaction was non-selective, i.e., two monosubstituted derivatives were isolated in each case, whereas only one mono-isomer was formed with phenyl- and 2-thienylboronic acids. This was explained by the fact that heterocyclic indoline and carbazole fragments are much stronger donor groups compared to thiophene and benzene, as confirmed by cyclic voltammetry measurements and calculation of HOMO energies of indoline, carbazole, thiophene and benzene molecules. The structure of monoaryl(hetaryl) derivatives was strictly proven by NMR spectroscopy and X-ray diffraction. The optical and photovoltaic properties observed for the KEA dyes showed that these compounds are promising for the creation of solar cells. A comparison with symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 showed that the asymmetric nature of benzo[d][1,2,3]thiadiazole KEA dyes leads to a hypsochromic shift of the ICT band in comparison with the corresponding benzo[c][1,2,5]thiadiazole isomers. KEA dyes have a narrow HOMO-LUMO gap of 1.5–1.6 eV. Amongst these dyes, KEA321 recorded the best power efficiency (PCE), i.e., 5.17%, which is superior to the corresponding symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 (5.07 and 4.90%)
Integrated Study of the Dinitrobenzene Electroreduction Mechanism by Electroanalytical and Computational Methods
Electroreduction of 1,2-, 1,3-, and 1,4-dinitrobenzenes in DMF has been investigated by a set of experimental (cyclic voltammetry, chronoamperometry, and controlled potential electrolysis) and theoretical methods (digital simulation and quantum chemical calculations). The transformation of only one nitro group is observed in the presence of proton donors. The process selectivity is provided by reactions of radical anions' intermediate products. The key reactions here are protonation of radical anions of nitrosonitrobenzenes and N-O bond cleavage in radical anions of N-(nitrophenyl)-hydroxylamines
Benzothiadiazole vs. iso-Benzothiadiazole: Synthesis, Electrochemical and Optical Properties of D–A–D Conjugated Molecules Based on Them
This paper presents an improved synthesis of 4,7-dibromobenzo[d][1,2,3]thiadiazole from commercially available reagents. According to quantum-mechanical calculations, benzo[d][1,2,3]thiadiazole (isoBTD) has higher values of ELUMO and energy band gap (Eg), which indicates high electron conductivity, occurring due to the high stability of the molecule in the excited state. We studied the cross-coupling reactions of this dibromide and found that the highest yields of π-spacer–acceptor–π-spacer type compounds were obtained by means of the Stille reaction. Therefore, 6 new structures of this type have been synthesized. A detailed study of the optical and electrochemical properties of the obtained π-spacer–acceptor–π-spacer type compounds in comparison with isomeric structures based on benzo[c][1,2,5]thiadiazole (BTD) showed a red shift of absorption maxima with lower absorptive and luminescent capacity. However, the addition of the 2,2′-bithiophene fragment as a π-spacer resulted in an unexpected increase of the extinction coefficient in the UV/vis spectra along with a blue shift of both absorption maxima for the isoBTD-based compound as compared to the BTD-based compound. Thus, a thorough selection of components in the designing of appropriate compounds with benzo[d][1,2,3]thiadiazole as an internal acceptor can lead to promising photovoltaic materials