5 research outputs found

    A mitochondria-specific mutational signature of aging: increased rate of A > G substitutions on the heavy strand

    No full text
    The mutational spectrum of the mitochondrial DNA (mtDNA) does not resemble any of the known mutational signatures of the nuclear genome and variation in mtDNA mutational spectra between different organisms is still incomprehensible. Since mitochondria are responsible for aerobic respiration, it is expected that mtDNA mutational spectrum is affected by oxidative damage. Assuming that oxidative damage increases with age, we analyse mtDNA mutagenesis of different species in regards to their generation length. Analysing, (i) dozens of thousands of somatic mtDNA mutations in samples of different ages (ii) 70053 polymorphic synonymous mtDNA substitutions reconstructed in 424 mammalian species with different generation lengths and (iii) synonymous nucleotide content of 650 complete mitochondrial genomes of mammalian species we observed that the frequency of A(H) > G(H) substitutions (H: heavy strand notation) is twice bigger in species with high versus low generation length making their mtDNA more A(H) poor and G(H) rich. Considering that A(H) > G(H) substitutions are also sensitive to the time spent single-stranded (TSSS) during asynchronous mtDNA replication we demonstrated that A(H) > G(H) substitution rate is a function of both species-specific generation length and position-specific TSSS. We propose that A(H) > G(H) is a mitochondria-specific signature of oxidative damage associated with both aging and TSSS

    Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond

    No full text
    Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.</p
    corecore