8 research outputs found
Singularly perturbed periodic and semiperiodic differential operators
Qualitative and spectral properties of the form-sums
S_{\pm}(V):=D_{\pm}^{2m}\dotplus V(x),\quad m\in \mathbb{N}, in the Hilbert
space are studied. Here the periodic and the
semiperiodic differential operators are ,
and is a 1-periodic complex-valued distribution in the Sobolev spaces
, .Comment: 13 page
On solvability of inhomogeneous boundary-value problems in Sobolev—Slobodetskiy spaces
We investigate the most general class of Fredholm one-dimensional boundary-value problems in the Sobolev—Slobodetskiy
spaces. Boundary conditions of these problems may contain a derivative of the whole or fractional
order. It is established that each of these boundary-value problems corresponds to a certain rectangular numerical
characteristic matrix with kernel and cokernel having the same dimension as the kernel and cokernel of the boundary-
value problem. The sufficient conditions for the sequence of the characteristic matrices of a specified boundary-value
problems to converge are found.Досліджено найбільш широкий клас нетерових одновимірних крайових задач у просторах Соболєва—Слободецького. Крайові умови в них можуть містити похідні розв'язку цілого або дробового порядку.
Встановлено, що кожній із таких крайових задач відповідає деяка прямокутна числова характеристична матриця, вимірність ядра і коядра якої збігаються відповідно з вимірністю ядра і коядра крайової
задачі. Знайдені достатні умови збіжності послідовності характеристичних матриць розглянутих крайових задач.Исследуется наиболее широкий класс нетеровых одномерных краевых задач в пространствах Соболева—Слободецкого. Краевые условия в них могут содержать производные решения целого или дробного
порядка. Показано, что каждой из таких краевых задач соответствует некоторая прямоугольная числовая
характеристическая матрица, размерность ядра и коядра которой совпадают соответственно с размерностью ядра и коядра краевой задачи. Найдены достаточные условия сходимости последовательности характеристических матриц рассмотренных краевых задач
On Fredholm parameter-dependent boundary-value problem in Sobolev spaces
We consider the most general class of linear inhomogeneous boundary-value problems for systems of r-th order
ordinary differential equations whose solutions and right-hand sides belong to appropriate Sobolev spaces. For
parameter-dependent problems from this class, we prove a constructive criterion under which their solutions are
continuous in the Sobolev space with respect to the parameter. We also prove a two-sided estimate for the degree of
convergence of these solutions to the solution of the nonperturbed problem.Досліджено найбільш загальний клас лінійних неоднорідних крайових задач для систем звичайних диференціальних рівнянь довільного порядку, розв'язки і права частина яких належать до відповідних просторів Соболєва. Для залежних від параметрів задач цього класу встановлено конструктивний критерій неперервності за параметром розв'язків у просторі Соболєва. Знайдено двосторонню оцінку швидкості
збіжності цих розв'язків до розв'язку незбуреної задачі.Исследуется наиболее общий класс линейных неоднородных краевых задач для систем обыкновенных
дифференциальных уравнений произвольного порядка, решения и правые части которых принадлежат
соответствующим пространствам Соболева. Для зависящих от параметров задач из этого класса установлен конструктивный критерий того, что решения задач непрерывны по параметру в пространстве Соболева. Найдена двусторонняя оценка скорости сходимости этих решений к решению невозмущенной задачи
Cantor and band spectra for periodic quantum graphs with magnetic fields
We provide an exhaustive spectral analysis of the two-dimensional periodic
square graph lattice with a magnetic field. We show that the spectrum consists
of the Dirichlet eigenvalues of the edges and of the preimage of the spectrum
of a certain discrete operator under the discriminant (Lyapunov function) of a
suitable Kronig-Penney Hamiltonian. In particular, between any two Dirichlet
eigenvalues the spectrum is a Cantor set for an irrational flux, and is
absolutely continuous and has a band structure for a rational flux. The
Dirichlet eigenvalues can be isolated or embedded, subject to the choice of
parameters. Conditions for both possibilities are given. We show that
generically there are infinitely many gaps in the spectrum, and the
Bethe-Sommerfeld conjecture fails in this case.Comment: Misprints correcte
A Survey on the Krein-von Neumann Extension, the corresponding Abstract Buckling Problem, and Weyl-Type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains
In the first (and abstract) part of this survey we prove the unitary
equivalence of the inverse of the Krein--von Neumann extension (on the
orthogonal complement of its kernel) of a densely defined, closed, strictly
positive operator, for some in a Hilbert space to an abstract buckling problem operator.
This establishes the Krein extension as a natural object in elasticity theory
(in analogy to the Friedrichs extension, which found natural applications in
quantum mechanics, elasticity, etc.).
In the second, and principal part of this survey, we study spectral
properties for , the Krein--von Neumann extension of the
perturbed Laplacian (in short, the perturbed Krein Laplacian)
defined on , where is measurable, bounded and
nonnegative, in a bounded open set belonging to a
class of nonsmooth domains which contains all convex domains, along with all
domains of class , .Comment: 68 pages. arXiv admin note: extreme text overlap with arXiv:0907.144