21 research outputs found

    Beyond Heavy Top Limit In Higgs Boson Production At LHC

    Get PDF
    QCD corrections to inclusive Higgs boson production at the LHC are evaluated at next-to-next-to leading order. By performing asymptotic expansion of the cross section near the limit of infinitely heavy top quark we obtained a few first top mass-suppressed terms. The corrections to the hadronic cross sections are found to be small compared to the scale uncertainty, thus justifying the use of heavy top quark approximation in many published results.Comment: Talk at Moriond QCD 2010 conference, La Thuile, March 13-20 201

    Finite top quark mass effects in NNLO Higgs boson production at LHC

    Full text link
    We present next-to-next-to-leading order corrections to the inclusive production of the Higgs bosons at the CERN Large Hadron Collider (LHC) including finite top quark mass effects. Expanding our analytic results for the partonic cross section around the soft limit we find agreement with a very recent publication by Harlander and Ozeren \cite{Harlander:2009mq}.Comment: 15 page

    Production of scalar and pseudo-scalar Higgs bosons to next-to-next-to-leading order at hadron colliders

    Full text link
    We consider the production of intermediate-mass CP-even and CP-odd Higgs bosons in proton-proton and proton-anti-proton collisions. We extend the recently published results for the complete next-to-next-to-leading order calculation for a scalar Higgs boson to the pseudo-scalar case and present details of the calculation that might be useful for similar future investigations. The result is based on an expansion in the limit of a heavy top quark mass and a subsequent matching to the expression obtained in the limit of infinite energy. For a Higgs boson mass of 120 GeV the deviation from the infinite-top quark mass result is small. For 300 GeV, however, the next-to-next-to-leading order corrections for a scalar Higgs boson exceed the effective-theory result by about 9% which increases to 22% in the pseudo-scalar case. Thus in this mass range the effect on the total cross section amounts to about 2% and 6%, respectively, which may be relevant in future precision studies.Comment: 29 page

    Endovascular embolization in the treatment of patients with closed abdominal trauma

    Get PDF
    Background. Closed abdominal trauma is often accompanied by damage to the abdominal organs and retroperitoneal space. With the development of medicine, minimally invasive methods of treating patients with bleeding due to closed abdominal trauma have become available, including endovascular embolization of the bloodstream, which allows one to avoid traditional operations (laparotomy) in this category of patients and achieve rapid rehabilitation of patients. Aim. To evaluate the possibility of X-ray endovascular embolization in the treatment of patients with closed abdominal trauma. Materials and methods. At the Sklifosovsky Research Institute of Emergency Medicine in 2022–2024 treated 68 patients with a diagnosis of “closed abdominal trauma”, of which 14 underwent direct angiography. In 4 (28.6%) patients, the intervention was diagnostic, in 10 (71.4%) it was therapeutic and diagnostic. These patients were included in this study: 8 (57.1%) men and 6 (42.9%) women. Results. Selective embolization of the splenic artery was performed in four (28.5%) cases, the renal artery in 2 (14.2%), the lumbar artery in 2 (14.2%), and the hepatic artery in 2 (14.2%). A retroperitoneal (perinephric) hematoma was punctured percutaneously under ultrasound guidance in one case to exclude urinary leakage in a patient with a kidney injury. One (7.1%) patient required laparotomy due to recurrent bleeding. There were no complications from X-ray endovascular interventions. There were no cases of hematoma infection. One (7.1%) death in a 70-year-old patient with a closed abdominal injury, subcapsular hematoma of the spleen with comorbid pathology. Conclusion. The use of X-ray endovascular embolization made it possible to avoid traditional surgical interventions (laparotomy) in 20.6% of cases. The introduction of X-ray endovascular hemostasis is one of the priorities in the treatment of patients with closed abdominal trauma

    O (alpha 4 s) loop-by-loop contributions to heavy quark pair production in hadronic collisions

    No full text
    The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) O(αs3){\cal O} (\alpha_s^3) corrections to the hadroproduction of heavy quarks have raised the leading order (LO) O(αs2){\cal O} (\alpha_s^2) estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) O(αs4){\cal O} (\alpha_s^4) calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the {\cal O}(\ep^2) expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter \ep up to {\cal O}(\ep^{-2}), the Laurent series of the scalar integrals has to be calculated up to {\cal O}(\ep^2). The negative powers of \ep are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The {\cal O}(\ep^2) expansion of the three- and four-point integrals contains in general classical polylogarithms up to Li4{\rm Li}_4 and LL-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the LL-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the LL-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the ${\ cal O}(\ep^2)resultsononeloopmatrixelementsinheavyflavorhadroproductioncontainingthefullspininformation.The results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The {\cal O}(\ep^2)termsariseasacombinationofthe terms arise as a combination of the {\cal O}(\ep^2)resultsforthescalarintegrals,thespinalgebraandthePassarinoVeltmandecomposition.TheoneloopmatrixelementswillbeneededasinputinthedeterminationoftheloopbylooppartofNNLOforthehadronicheavyflavorproduction.DerheutigeZustanddertheoretischenVorhersagenfu¨rdiehadronischeProduktionschwererHadronenistnichtzufriedenstellend.Dievollsta¨ndigennexttoleadingorder(NLO) results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.Der heutige Zustand der theoretischen Vorhersagen für die hadronische Produktion schwerer Hadronen ist nicht zufriedenstellend. Die vollständigen ``next-to-leading order'' (NLO) {\cal O} (\alpha_s^3)KorrekturenzurhadronischenProduktionschwererQuarkshabendieBeitra¨gederfu¨hrendenOrdnung(leadingorderLO) Korrekturen zur hadronischen Produktion schwerer Quarks haben die Beiträge der führenden Ordnung (``leading order'' - LO) {\cal O} (\alpha_s^2)etwasvergro¨ssert,aberdieNLOVorhersagensindimmernochetwasunterhalbderexperimentellenWerte.Daru¨berhinaussinddietheoretischenNLOVorhersagenungenau,weildieUnsicherheitausderFreiheitinderWahlderRenormierungsundderFaktorisierungsskalendersto¨rungstheoretischenQCDrelativgrossist.Manhofft,dasseinenextnexttoleadingorder(NNLO) etwas vergrössert, aber die NLO Vorhersagen sind immer noch etwas unterhalb der experimentellen Werte. Darüberhinaus sind die theoretischen NLO Vorhersagen ungenau, weil die Unsicherheit aus der Freiheit in der Wahl der Renormierungs- und der Faktorisierungsskalen der störungstheoretischen QCD relativ gross ist. Man hofft, dass eine ``next-next-to-leading order'' (NNLO) {\cal O} (\alpha_s^4)RechnungdietheoretischenVorhersagendenexperimentellenDatenbesserbeschreibt.Auserdemerwartetman,dassdieAbha¨ngigkeitvondenFaktorisierungsundRenormierungsskalendesphysikalischenProzessesbeiNNLOstrarkreduziertwird.Dieswu¨rdedietheoretischeUnsicherheitreduzieren,unddafu¨rdenVergleichzwischenTheorieundExperimentwesentlichsignifikantermachen.IndieserArbeithabeichmichaufdenTeilderNNLORechnungenfu¨rhadronischeProduktionschwererQuarkskonzentriert,beiderEinschleifenintegraleinderFormeinesProdukteszweierSchleifenbeitragen.ImerstenTeilderArbeitbenutzeichdiedimensionaleRegularisierung,umdieOrdnung Rechnung die theoretischen Vorhersagen den experimentellen Daten besser beschreibt. Auserdem erwartet man, dass die Abhängigkeit von den Faktorisierungs- und Renormierungsskalen des physikalischen Prozesses bei NNLO strark reduziert wird. Dies würde die theoretische Unsicherheit reduzieren, und dafür den Vergleich zwischen Theorie und Experiment wesentlich signifikanter machen. In dieser Arbeit habe ich mich auf den Teil der NNLO Rechnungen für hadronische Produktion schwerer Quarks konzentriert, bei der Einschleifenintegrale in der Form eines Produktes zweier Schleifen beitragen. Im ersten Teil der Arbeit benutze ich die dimensionale Regularisierung, um die Ordnung {\cal O} (\alpha_s^2)EntwicklungderskalarenEinschleifenEin,Zwei,DreiundVierpunktintegralezuberechnen.DieLaurentReihederskalarenIntegralewirdalsInputfu¨rdieBerechnungderEinschleifenMatrixelementefu¨rdieBeitra¨gederSchleifenproduktebeno¨tigt.WeiljederFaktordieserSchleifenproduktenegativePotenzendesdimensionalenRegularisierungsparametres Entwicklung der skalaren Einschleifen Ein-, Zwei-, Drei- und Vierpunktintegrale zu berechnen. Die Laurent-Reihe der skalaren Integrale wird als Input für die Berechnung der Einschleifen-Matrixelemente für die Beiträge der Schleifenprodukte benötigt. Weil jeder Faktor dieser Schleifenprodukte negative Potenzen des dimensionalen Regularisierungsparametres \epbiszu bis zu {\cal O} (\ep^{-2})besitzt,mussdieLaurentReihefu¨rdieskalarenIntegralebiszu besitzt, muss die Laurent-Reihe für die skalaren Integrale bis zu {\cal O} (\ep^2 )berechnetwerden.DienegativenPotenzenvon berechnet werden. Die negativen Potenzen von \epsindeineKonsequenzvonUltraviolettundInfrarot/kollinearen(oderMassen)Divergenzen.UnterdenskalarenIntegralensinddieVierpunktintegralediekompliziertesten.Die sind eine Konsequenz von Ultraviolett- und Infrarot-/ kollinearen (oder Massen-) Divergenzen. Unter den skalaren Integralen sind die Vierpunktintegrale die kompliziertesten. Die {\cal O} (\ep^2 )EntwicklungderDreiundVierpunktintegraleentha¨ltimallgemeinenklassischePolylogarithmenbis Entwicklung der Drei- und Vierpunktintegrale enthält im allgemeinen klassische Polylogarithmen bis \Li_{4},und, und LFunktionen,diemitmultiplenPolylogarithmenvonmaximalGewichtundTiefevierzusammenha¨ngen.AlleErgebnissefu¨rdieskalarenIntegralesindinelektronischerFormverfu¨gbar.ImzweitenTeildieserArbeitdiskutiereichdieEigenschaftenderklassischenPolylogarithmen.Ichpra¨sentiereAlgorithmen,welcheeserlauben,dieAnzahlderPolylogarithmenineinemalgebraischenAusdru¨ckzureduzieren.IchleiteIdentita¨tenf"urdie- Funktionen, die mit multiplen Polylogarithmen von maximal Gewicht und Tiefe vier zusammenhängen. Alle Ergebnisse für die skalaren Integrale sind in elektronischer Form verfügbar. Im zweiten Teil dieser Arbeit diskutiere ich die Eigenschaften der klassischen Polylogarithmen. Ich präsentiere Algorithmen, welche es erlauben, die Anzahl der Polylogarithmen in einem algebraischen Ausdrück zu reduzieren.Ich leite Identitäten f"ur die LFunktionenab,dieha¨ufiginderArbeitverwendetwurden,umdieLa¨ngederEndergebnissefu¨rdieskalarenIntegralezureduzieren.Dar"uberhinausdiskutiereichdieEigenschaftendermultiplenPolylogarithmen.IchleiteIdentita¨tenher,umdie-Funktionen ab, die häufig in der Arbeit verwendet wurden, um die Länge der Endergebnisse für die skalaren Integrale zu reduzieren. Dar"uberhinaus diskutiere ich die Eigenschaften der multiplen Polylogarithmen. Ich leite Identitäten her, um die LFunktionendurchmultiplePolylogarithmenauszudru¨cken.IndrittenTeiluntersucheichdienumerischeEffizienzderErgebnissefu¨rdieskalarenIntegrale.DieAbha¨ngigkeitderRechenzeitvomrelativenFehlerwirddiskutiert.ImviertenTeildieserArbeitpra¨sentiereichdengro¨sserenTeilder-Funktionen durch multiple Polylogarithmen auszudrücken. In dritten Teil untersuche ich die numerische Effizienz der Ergebnisse für die skalaren Integrale. Die Abhängigkeit der Rechenzeit vom relativen Fehler wird diskutiert. Im vierten Teil dieser Arbeit präsentiere ich den grösseren Teil der {\cal O} (\ep^2)Ergebnissefu¨rEinschleifenMatrixelementezurhadronischenProduktionschwererQuarkseinschliesslichdervollsta¨ndigenSpininformation.Die Ergebnisse für Einschleifen-Matrixelemente zur hadronischen Produktion schwerer Quarks einschliesslich der vollständigen Spininformation. Die {\cal O} (\ep^2)TermetretenalsKombinationder Terme treten als Kombination der {\cal O} (\ep^2)$ Ergebnisse für die skalaren Integrale, der Spinalgebra und der Passarino-Veltman Zerlegung auf. Die Einschleifen-Matrixelemente werden als Input in der Bestimmung des Schleifenproduktanteils von NNLO für die hadronische Produktion schwerer Quarks benötigt

    Computing of Charged Current DIS at three loops

    No full text

    NNLO Higgs production beyond heavy top limit at LHC

    Full text link

    O (alpha 4 s) loop-by-loop contributions to heavy quark pair production in hadronic collisions

    No full text
    The present state of the theoretical predictions for the hadronic heavy hadron production is not quite satisfactory. The full next-to-leading order (NLO) calO(alphas3){cal O} (alpha_s^3) corrections to the hadroproduction of heavy quarks have raised the leading order (LO) calO(alphas2){cal O} (alpha_s^2) estimates but the NLO predictions are still slightly below the experimental numbers. Moreover, the theoretical NLO predictions suffer from the usual large uncertainty resulting from the freedom in the choice of renormalization and factorization scales of perturbative QCD.In this light there are hopes that a next-to-next-to-leading order (NNLO) calO(alphas4){cal O} (alpha_s^4) calculation will bring theoretical predictions even closer to the experimental data. Also, the dependence on the factorization and renormalization scales of the physical process is expected to be greatly reduced at NNLO. This would reduce the theoretical uncertainty and therefore make the comparison between theory and experiment much more significant. In this thesis I have concentrated on that part of NNLO corrections for hadronic heavy quark production where one-loop integrals contribute in the form of a loop-by-loop product. In the first part of the thesis I use dimensional regularization to calculate the calO(ep2){cal O}(ep^2) expansion of scalar one-loop one-, two-, three- and four-point integrals. The Laurent series of the scalar integrals is needed as an input for the calculation of the one-loop matrix elements for the loop-by-loop contributions. Since each factor of the loop-by-loop product has negative powers of the dimensional regularization parameter epep up to calO(ep2){cal O}(ep^{-2}), the Laurent series of the scalar integrals has to be calculated up to calO(ep2){cal O}(ep^2). The negative powers of epep are a consequence of ultraviolet and infrared/collinear (or mass ) divergences. Among the scalar integrals the four-point integrals are the most complicated. The calO(ep2){cal O}(ep^2) expansion of the three- and four-point integrals contains in general classical polylogarithms up to rmLi4{rm Li}_4 and LL-functions related to multiple polylogarithms of maximal weight and depth four. All results for the scalar integrals are also available in electronic form. In the second part of the thesis I discuss the properties of the classical polylogarithms. I present the algorithms which allow one to reduce the number of the polylogarithms in an expression. I derive identities for the LL-functions which have been intensively used in order to reduce the length of the final results for the scalar integrals. I also discuss the properties of multiple polylogarithms. I derive identities to express the LL-functions in terms of multiple polylogarithms. In the third part I investigate the numerical efficiency of the results for the scalar integrals. The dependence of the evaluation time on the relative error is discussed. In the forth part of the thesis I present the larger part of the calO(ep2){ cal O}(ep^2) results on one-loop matrix elements in heavy flavor hadroproduction containing the full spin information. The calO(ep2){cal O}(ep^2) terms arise as a combination of the calO(ep2){cal O}(ep^2) results for the scalar integrals, the spin algebra and the Passarino-Veltman decomposition. The one-loop matrix elements will be needed as input in the determination of the loop-by-loop part of NNLO for the hadronic heavy flavor production.Der heutige Zustand der theoretischen Vorhersagen für die hadronische Produktion schwerer Hadronen ist nicht zufriedenstellend. Die vollständigen ``next-to-leading order'' (NLO) calO(alphas3){cal O} (alpha_s^3) Korrekturen zur hadronischen Produktion schwerer Quarks haben die Beiträge der führenden Ordnung (``leading order'' - LO) calO(alphas2){cal O} (alpha_s^2) etwas vergrössert, aber die NLO Vorhersagen sind immer noch etwas unterhalb der experimentellen Werte. Darüberhinaus sind die theoretischen NLO Vorhersagen ungenau, weil die Unsicherheit aus der Freiheit in der Wahl der Renormierungs- und der Faktorisierungsskalen der störungstheoretischen QCD relativ gross ist. Man hofft, dass eine ``next-next-to-leading order'' (NNLO) calO(alphas4){cal O} (alpha_s^4) Rechnung die theoretischen Vorhersagen den experimentellen Daten besser beschreibt. Auserdem erwartet man, dass die Abhängigkeit von den Faktorisierungs- und Renormierungsskalen des physikalischen Prozesses bei NNLO strark reduziert wird. Dies würde die theoretische Unsicherheit reduzieren, und dafür den Vergleich zwischen Theorie und Experiment wesentlich signifikanter machen. In dieser Arbeit habe ich mich auf den Teil der NNLO Rechnungen für hadronische Produktion schwerer Quarks konzentriert, bei der Einschleifenintegrale in der Form eines Produktes zweier Schleifen beitragen. Im ersten Teil der Arbeit benutze ich die dimensionale Regularisierung, um die Ordnung calO(alphas2){cal O} (alpha_s^2) Entwicklung der skalaren Einschleifen Ein-, Zwei-, Drei- und Vierpunktintegrale zu berechnen. Die Laurent-Reihe der skalaren Integrale wird als Input für die Berechnung der Einschleifen-Matrixelemente für die Beiträge der Schleifenprodukte benötigt. Weil jeder Faktor dieser Schleifenprodukte negative Potenzen des dimensionalen Regularisierungsparametres epep bis zu calO(ep2){cal O} (ep^{-2}) besitzt, muss die Laurent-Reihe für die skalaren Integrale bis zu calO(ep2){cal O} (ep^2 ) berechnet werden. Die negativen Potenzen von epep sind eine Konsequenz von Ultraviolett- und Infrarot-/ kollinearen (oder Massen-) Divergenzen. Unter den skalaren Integralen sind die Vierpunktintegrale die kompliziertesten. Die calO(ep2){cal O} (ep^2 ) Entwicklung der Drei- und Vierpunktintegrale enthält im allgemeinen klassische Polylogarithmen bis Li4Li_{4}, und LL- Funktionen, die mit multiplen Polylogarithmen von maximal Gewicht und Tiefe vier zusammenhängen. Alle Ergebnisse für die skalaren Integrale sind in elektronischer Form verfügbar. Im zweiten Teil dieser Arbeit diskutiere ich die Eigenschaften der klassischen Polylogarithmen. Ich präsentiere Algorithmen, welche es erlauben, die Anzahl der Polylogarithmen in einem algebraischen Ausdrück zu reduzieren.Ich leite Identitäten f"ur die LL-Funktionen ab, die häufig in der Arbeit verwendet wurden, um die Länge der Endergebnisse für die skalaren Integrale zu reduzieren. Dar"uberhinaus diskutiere ich die Eigenschaften der multiplen Polylogarithmen. Ich leite Identitäten her, um die LL-Funktionen durch multiple Polylogarithmen auszudrücken. In dritten Teil untersuche ich die numerische Effizienz der Ergebnisse für die skalaren Integrale. Die Abhängigkeit der Rechenzeit vom relativen Fehler wird diskutiert. Im vierten Teil dieser Arbeit präsentiere ich den grösseren Teil der calO(ep2){cal O} (ep^2) Ergebnisse für Einschleifen-Matrixelemente zur hadronischen Produktion schwerer Quarks einschliesslich der vollständigen Spininformation. Die calO(ep2){cal O} (ep^2) Terme treten als Kombination der calO(ep2){cal O} (ep^2) Ergebnisse für die skalaren Integrale, der Spinalgebra und der Passarino-Veltman Zerlegung auf. Die Einschleifen-Matrixelemente werden als Input in der Bestimmung des Schleifenproduktanteils von NNLO für die hadronische Produktion schwerer Quarks benötigt
    corecore