8 research outputs found

    Research progress on deep learning in magnetic resonance imaging–based diagnosis and treatment of prostate cancer: a review on the current status and perspectives

    Get PDF
    Multiparametric magnetic resonance imaging (mpMRI) has emerged as a first-line screening and diagnostic tool for prostate cancer, aiding in treatment selection and noninvasive radiotherapy guidance. However, the manual interpretation of MRI data is challenging and time-consuming, which may impact sensitivity and specificity. With recent technological advances, artificial intelligence (AI) in the form of computer-aided diagnosis (CAD) based on MRI data has been applied to prostate cancer diagnosis and treatment. Among AI techniques, deep learning involving convolutional neural networks contributes to detection, segmentation, scoring, grading, and prognostic evaluation of prostate cancer. CAD systems have automatic operation, rapid processing, and accuracy, incorporating multiple sequences of multiparametric MRI data of the prostate gland into the deep learning model. Thus, they have become a research direction of great interest, especially in smart healthcare. This review highlights the current progress of deep learning technology in MRI-based diagnosis and treatment of prostate cancer. The key elements of deep learning-based MRI image processing in CAD systems and radiotherapy of prostate cancer are briefly described, making it understandable not only for radiologists but also for general physicians without specialized imaging interpretation training. Deep learning technology enables lesion identification, detection, and segmentation, grading and scoring of prostate cancer, and prediction of postoperative recurrence and prognostic outcomes. The diagnostic accuracy of deep learning can be improved by optimizing models and algorithms, expanding medical database resources, and combining multi-omics data and comprehensive analysis of various morphological data. Deep learning has the potential to become the key diagnostic method in prostate cancer diagnosis and treatment in the future

    Unleashing novel horizons in advanced prostate cancer treatment: investigating the potential of prostate specific membrane antigen-targeted nanomedicine-based combination therapy

    Get PDF
    Prostate cancer (PCa) is a prevalent malignancy with increasing incidence in middle-aged and older men. Despite various treatment options, advanced metastatic PCa remains challenging with poor prognosis and limited effective therapies. Nanomedicine, with its targeted drug delivery capabilities, has emerged as a promising approach to enhance treatment efficacy and reduce adverse effects. Prostate-specific membrane antigen (PSMA) stands as one of the most distinctive and highly selective biomarkers for PCa, exhibiting robust expression in PCa cells. In this review, we explore the applications of PSMA-targeted nanomedicines in advanced PCa management. Our primary objective is to bridge the gap between cutting-edge nanomedicine research and clinical practice, making it accessible to the medical community. We discuss mainstream treatment strategies for advanced PCa, including chemotherapy, radiotherapy, and immunotherapy, in the context of PSMA-targeted nanomedicines. Additionally, we elucidate novel treatment concepts such as photodynamic and photothermal therapies, along with nano-theragnostics. We present the content in a clear and accessible manner, appealing to general physicians, including those with limited backgrounds in biochemistry and bioengineering. The review emphasizes the potential benefits of PSMA-targeted nanomedicines in enhancing treatment efficiency and improving patient outcomes. While the use of PSMA-targeted nano-drug delivery has demonstrated promising results, further investigation is required to comprehend the precise mechanisms of action, pharmacotoxicity, and long-term outcomes. By meticulous optimization of the combination of nanomedicines and PSMA ligands, a novel horizon of PSMA-targeted nanomedicine-based combination therapy could bring renewed hope for patients with advanced PCa

    Impact of endoscopic enucleation of the prostate with thulium fiber laser on the erectile function

    No full text
    Abstract Background The impact of number of endoscopic enucleation of the prostate techniques (holmium laser enucleation - HoLEP for example) on erectile function have already been investigated. However, the thulium-fiber laser, in this setting remains unstudied. In this study, we compared sexual function outcomes in patients with benign prostatic hyperplasia (BPH) treated with transurethral resection of the prostate (TURP) or thulium-fiber laser enucleation (ThuFLEP). Methods We performed a retrospective analysis of patients who underwent transurethral resection and endoscopic enucleation of the prostate for BPH; inclusion criteria was the presence of infravesical obstruction (IPSS > 20, Qmax < 10 mL/s). Erectile function (EF) was assessed using the International Index of Erectile Function (IIEF-5) both prior to endoscopic examination, and six months after. Results A total of 469 patients with BPH were included in the study; of these, 211 underwent to ThuFLEP, and 258 TURP. Preoperative IIEF-5 in TURP and ThuFLEP groups were 11.7 (±4.5) and 11.1 (±5.0), respectively (p = 0.17). At six month the IIEF-5 score was unchanged (p = 0.26 and p = 0.08) and comparable in both groups (p = 0.49). However, mean IIEF-5 score shown significant increase of 0.72 in ThuFLEP group, comparing to decrease of 0.24 in TURP patients (p < 0.001). Conclusions Both TURP and ThuFLEP are effective modalities in the management of infravesical obstruction due to BPH. At six months follow-up after surgery, both techniques lead to comparable IIEF-5 score. However, our results demonstrated that the ThuFLEP is more likely to preserve the erectile function leading to increase of IIEF-5 at six months in contrast to TURP which lead to slight drop in IIEF-5 score

    Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects

    No full text
    Recent immunotherapy research has focused on chimeric antigen receptor-modified T cells (CAR-Ts). CAR-T therapies have been clinically applied to manage hematologic malignancies with satisfactory effectiveness. However, the application of CAR-T immunotherapy in solid tumors remains challenging. Even so, current CAR-T immunotherapies for prostate cancer (PCa) have shown some promise, giving hope to patients with advanced metastatic PCa. This review aimed to elucidate different types of prostate tumor-associated antigen targets, such as prostate-specific membrane antigen and prostate stem cell antigen, and their effects. The current status of the corresponding targets in clinical research through their applications was also discussed. To improve the efficacy of CAR-T immunotherapy, we addressed the possible applications of multimodal immunotherapy, chemotherapy, and CAR-T combined therapies. The obstacles of solid tumors were concisely elaborated. Further studies should aim to discover novel potential targets and establish new models by overcoming the inherent barriers of solid tumors, such as tumor heterogeneity and the immunosuppressive nature of the tumor microenvironment

    Development of Bioactive Scaffolds for Orthopedic Applications by Designing Additively Manufactured Titanium Porous Structures: A Critical Review

    No full text
    We overview recent findings achieved in the field of model-driven development of additively manufactured porous materials for the development of a new generation of bioactive implants for orthopedic applications. Porous structures produced from biocompatible titanium alloys using selective laser melting can present a promising material to design scaffolds with regulated mechanical properties and with the capacity to be loaded with pharmaceutical products. Adjusting pore geometry, one could control elastic modulus and strength/fatigue properties of the engineered structures to be compatible with bone tissues, thus preventing the stress shield effect when replacing a diseased bone fragment. Adsorption of medicals by internal spaces would make it possible to emit the antibiotic and anti-tumor agents into surrounding tissues. The developed internal porosity and surface roughness can provide the desired vascularization and osteointegration. We critically analyze the recent advances in the field featuring model design approaches, virtual testing of the designed structures, capabilities of additive printing of porous structures, biomedical issues of the engineered scaffolds, and so on. Special attention is paid to highlighting the actual problems in the field and the ways of their solutions
    corecore