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Multiparametric magnetic resonance imaging (mpMRI) has emerged as a first-

line screening and diagnostic tool for prostate cancer, aiding in treatment

selection and noninvasive radiotherapy guidance. However, the manual

interpretation of MRI data is challenging and time-consuming, which may

impact sensitivity and specificity. With recent technological advances, artificial

intelligence (AI) in the form of computer-aided diagnosis (CAD) based on MRI

data has been applied to prostate cancer diagnosis and treatment. Among AI

techniques, deep learning involving convolutional neural networks contributes

to detection, segmentation, scoring, grading, and prognostic evaluation of

prostate cancer. CAD systems have automatic operation, rapid processing, and

accuracy, incorporating multiple sequences of multiparametric MRI data of the

prostate gland into the deep learning model. Thus, they have become a research

direction of great interest, especially in smart healthcare. This review highlights

the current progress of deep learning technology in MRI-based diagnosis and

treatment of prostate cancer. The key elements of deep learning-based MRI

image processing in CAD systems and radiotherapy of prostate cancer are briefly

described, making it understandable not only for radiologists but also for general

physicians without specialized imaging interpretation training. Deep learning

technology enables lesion identification, detection, and segmentation, grading

and scoring of prostate cancer, and prediction of postoperative recurrence and

prognostic outcomes. The diagnostic accuracy of deep learning can be
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improved by optimizing models and algorithms, expanding medical database

resources, and combining multi-omics data and comprehensive analysis of

various morphological data. Deep learning has the potential to become the

key diagnostic method in prostate cancer diagnosis and treatment in the future.
KEYWORDS

deep learning, machine learning, computer-aided diagnosis, prostate cancer,
radiotherapy, precision therapy
1 Introduction

Prostate cancer (PCa) is a commonly occurring urological

malignancy among middle-aged and older men, with its incidence

on the rise. In 2020, there were approximately 1.4 million new PCa

cases reported globally, resulting in around 375,000 deaths, making

it the second most common cancer among men, following lung

cancer, and the fifth leading cause of cancer-related deaths among

men (1). Although digital rectal examination and prostate-specific

antigen (PSA) test are routinely conducted for the diagnosis of PCa,

transrectal ultrasound (TRUS) has been the primary imaging

technique for clinical suspicion and diagnosis of PCa in the past

(2, 3). However, due to its low sensitivity and specificity, particularly

for detecting lesions present in the transitional zone (TZ), mpMRI

has replaced TRUS as the first-line radiological screening modality

for clinical suspicion of PCa (4–6). Compared with other imaging

examinations, MRI of the prostate provides a higher soft-tissue

resolution and multiple imaging data parameters non-invasively,

which facilitates better understanding of the complete prostate

gland and its relationship with the surrounding environment and

also provides improved guidance for PCa staging (7, 8). Therefore,

MRI has become the preferable imaging tool for patients with

suspected PCa or those at risk of PCa (9–11). The prostate imaging-

reporting and data system (PI-RADS) provides a comprehensive set

of standards for scanning, interpreting, and reporting mpMRI (12).

Combining mpMRI with PI-RADS scaling results in more precise

PCa diagnosis and staging, as well as improved guidance for later

biopsies, and has contributed significantly to reducing

overdiagnosis (13–15). Although mpMRI is a valuable technique

in PCa diagnosis, manual interpretation of mpMRI data is complex,

time-consuming, and challenging due to low sensitivity and

specificity of the interpreting results (16–18). Deep learning (DL)

technology has the capability to mine various features from medical

images that are difficult to identify and distinguish using the naked

eye in the macroscopic view (19, 20). DL technology can guide

clinicians in medical diagnosis and help reduce diagnostic accuracy

issues caused by factors mentioned above, providing physicians

with accurate disease information (21, 22). Over the past few years,

several computer-aided diagnosis (CAD) systems have been applied

to PCa diagnosis with positive outcomes (23–26). CAD systems can

be classified into two categories: computer-aided detection (CADe)

and computer-aided diagnosis (CADx) (27, 28). CADe can
02
determine if a patient has PCa and localize the possible PCa

lesion based on the entire mpMRI data. CADx can evaluate a

series of manually or automatically selected tumor-suspected areas

by radiologists or CADe systems, followed by assessing and

evaluating the aggressiveness of PCa (24, 29–31). This review

presents a cross-disciplinary summary of research progress in

PCa using DL-based CADs to make the artificial intelligence (AI)

process understandable to not only radiologists but also general

physicians who lack systematic and specialized imaging

interpretation training. We briefly describe the application of DL

techniques based on prostate MRI data and provide possible

research ideas for future studies.
2 Overview of deep
learning techniques

According to the latest Prostate Imaging-Reporting and Data

System Version 2.1 (PI-RADS 2.1) recommendations, mpMRI image

sequences for PCa detection and diagnosis typically consist of T2-

weighted imaging (T2W), diffusion-weighted imaging (DWI),

average diffusion coefficient (ADC) maps, and dynamic contrast-

enhanced (DCE) imaging (12). DWI and ADC sequences are

primarily employed to detect peripheral zone lesions, while T2W

focuses on detecting transition zone lesions (32, 33). The PI-RADS

score, calculated from mpMRI data, ranges from 1 (low likelihood of

clinically significant PCa) to 5 (high likelihood of clinically significant

PCa) and serves as a crucial diagnostic measure to determine the

necessity of a biopsy (34, 35). Due to its significant clinical value, PI-

RADS recommendations have been updated for standardizing

prostate MRI scanning and interpretation processes. However,

accurately interpreting mpMRI data requires a high level of

expertise and skill. Furthermore, inter-observer and intra-observer

variability values, which pertain to different radiologists interpreting

the same MRI results and a single radiologist interpreting the same

MRI results multiple times, respectively, tend to exhibit high

variability (36, 37). This affects the broader utilization of mpMRI in

PCa diagnosis. Consequently, to reduce interpretation time, enhance

image interpretation quality, and minimize the risk of overtreatment,

DL has emerged as the predominant AI method within machine

learning (ML) technology (38, 39). Inspired by human learning

patterns, ML can be broadly categorized into supervised learning,
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which utilizes well-labeled training data examples with fully

controlled data input and output, and unsupervised learning, which

operates on unlabeled datasets and aims to identify correlations

within the dataset (38–40). Semi-supervised learning, a hybrid

mode between supervised and unsupervised learning, uses partially

labeled training data while the remainder stays unlabeled (39, 41, 42).

Another renowned learning framework, reinforcement learning,

obtains feedback based on each action’s response in the

environment, modifying model parameters to maximize anticipated

benefits (39, 43). DL technology, introduced by Hinton in 2006 (44),

is an ML subset sharing similar working principles but featuring an

advanced multilayer neural network that mimics human biological

neural networks for data representation learning (39, 45). A key

distinction between ML and DL lies in feature extraction methods,

where conventional ML relies on hand-crafted approaches by expert

specialists, and DL automatically extracts features within network

layers (45, 46). As hand-crafted feature design demands significant

effort and considerable workload, a growing number of DL algorithm

(DLA) are emerging, tending to replace ML in medical image

processing (20, 45, 47). However, hand-crafted approaches persist

in situations with limited annotated data, and several studies have

demonstrated promising results by fusing models with classic hand-

crafted features and DL-extracted features (46, 48, 49). Typically, the

majority of CAD systems for PCa involve processing steps such as

imaging alignment, prostate localization and segmentation, feature-

based lesion detection, and task-based classification (16, 24).With the

increasing volume of labeled imaging data, supervised learning

models represented by convolutional neural networks (CNNs) and

non-supervised learning frameworks, including generative

adversarial networks (GANs), have been incorporated into various

medical imaging processes (50–53). In general, DLA-based analysis

constitutes a new form of computer-aided diagnosis that facilitates

the automatic acquisition of data-related features and identification of

lesions without the requirement of manual segmentation, provided

that the dataset is sufficiently large. This approach is innovative in

that it allows for spontaneous learning of features, resulting in

improved efficiency and accuracy of lesion detection (16, 20, 45,

54) (Figure 1).
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2.1 Main working principles of
DLA (Figure 2A)

In summary, within the medical imaging domain, DLAs perform

tasks such as image classification, object detection, and semantic

segmentation. Image classification determines benignity or

malignancy, tumor types, grading, and staging from medical images;

object detection localizes tumors and extracts their information from

images; and semantic segmentation outlines tumors or adjacent

organs in the images (54–57). Among the various DL-based models,

deep CNNs have garnered significant attention due to their promising

performance in medical imaging (52, 58). The multilayer neural

network structure of DLAs, inspired by the human visual system,

has the potential to process convolution operations (38, 52, 59). CNN

structures primarily consist of a convolutional layer, max-pooling

layer, and fully connected layer (20, 38, 58–61). These layers pertain to

specific calculation methods or functions that receive, compute, and

output relevant data. The convolution layer, the core of CNNs,

extracts image features by constructing multiple convolution kernels

(60). The max-pooling layer, also known as the down-sampling layer,

reduces computational effort by consolidating data within a certain

range. The fully connected layer, used as a classifier, integrates all local

information acquired from the previous max-pooling or convolutional

layer that is class-distinctive, ultimately producing the desired class

predictions (58, 61, 62). In brief, the convolutional layer of a CNN

functions as a feature extractor, while the fully connected layer serves

as a classifier (63) (Figure 2B). The trained CNN forms its network

structure and weight files, which are the foundation for predicting the

same type of unknown data. Function-dependent networks based on

CNN have been designed for specific computer vision tasks, such as

AlexNet and ResNet for image classification (64, 65), YOLO and

Faster R-CNN for object detection (66, 67), and U-Net and Mask R-

CNN for semantic segmentation (58, 61, 62, 68). Another valuable

deep learning network, the GAN, has demonstrated effectiveness for

semi-supervised learning (69), supervised learning (70), and

reinforcement learning (71), despite its initial proposal for

unsupervised learning. GAN can be simply described as a deep

learning model used to create alternative imaging data similar to the

target data, but with improved quality and reduced noise (51, 53, 72).

GAN primarily consists of two separate but interdependent neural

networks, functioning as the generator and the discriminator.

Generated data (false) from the generator, using random variables

as input, or target data (true) are then input into the discriminator (53,

72). These two networks are trained competitively and adversarially,

with the aim of making the discriminator model strictly capable of

distinguishing between the synthesized data generated by the

generator and the true data, while the generator intends to create

data as realistic as possible compared to the target data (53, 72, 73).

The primary objective of GAN is to render the discriminator network

incapable of differentiating between the output data generated by the

generator network and real data (Figure 2C). More recently, deep

convolutional GANs (DCGANs) have emerged by combining CNNs

and GANs to achieve better performance and effectiveness, resulting

in their increasing popularity for designing various computer-aided

diagnosis (CADx) models (53, 74–76).
FIGURE 1

Stratification of artificial intelligence. Created with BioRender.com.
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2.2 Evaluation metrics of DLA

Evaluation metrics for DLA in medical imaging applications

encompass accuracy, specificity, sensitivity, dice similarity

coefficient (DSC), Jaccard index, receiver operating characteristic

(ROC) curve, and area under the ROC curve (AUC) (77–81). While

general clinicians need not fully grasp the complex equations and

processes involved in these evaluation metrics, a basic

understanding of their core principles is crucial for accurately

interpreting the performance of pertinent DL models. Sensitivity

denotes the likelihood of detecting a positive sample within a

positive population (1.2.1), while specificity refers to the

probability of identifying a negative result in a negative

population (1.2.2) (77). DSC (1.2.3) and the Jaccard index are

promising evaluation metrics for assessing segmentation quality.

They are typically employed to calculate the similarity between two

samples, with values ranging from 0 to 1. A value closer to 1

indicates a better model performance (78, 82). The ROC curve is
Frontiers in Oncology 04
used to evaluate the diagnostic accuracy and performance of various

models. A curve closer to the upper left corner signifies higher

diagnostic value, and a larger AUC corresponds to greater

application value (79–81). AUC serves as a criterion for

determining the quality of classification models, referring to the

likelihood of positive examples ranking higher than negative

examples in prediction outcomes. An AUC between 0.5 and 1

implies that the model possesses predictive value, and a value closer

to 1 signifies superior model performance (79–81).

Sensitivity =
TP

(TP + FN)
1:2:1

Specificity =
TN

(TN + FP)
1:2:2

DSC =
2* ∣X∩Y ∣
Xj j + Yj j 1:2:3
B

C

A

FIGURE 2

Schematic illustration of deep learning algorithm. (A) Working algorithm of image processing. (B) Principle and architecture of CNN. (C) Principle and
architecture of GAN: T, True data; F, False data; ∫1 - Function 1 of the generator network; ∫2 - Function 2 of the discriminator network. Created with
BioRender.com.
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3 Application of mpMRI-based
DLA on PCa

3.1 Diagnosis of PCa

3.1.1 Detection and classification of PCa
In the clinical management of PCa, accurately distinguishing

between low-risk and high-risk cases is crucial to prevent

overdiagnosis or delayed treatment (92). For patients with low-

risk PCa, mpMRI serves as the primary imaging technique to

determine if the lesion has grown or metastasized and to assess

disease progression during active surveillance (93). Therefore, a

reliable noninvasive assessment system is of significant importance.

Fusco et al. (94) performed a systematic literature review, reporting

that MRI holds considerable clinical value in localizing and staging

PCa. Vente et al. (95) developed a multitasking U-Net model using

T2W and DWI sequences of MRI, capable of simultaneously

detecting and grading PCa with excellent diagnostic outcomes.

Wang et al. (96) designed an end-to-end CNN comprising two

sub-networks: one for aligning apparent DWI and T2W, and the

other as a convolutional neural classification network. The end-to-

end CNN model was trained and assessed on 360 patients using a

fivefold cross-validation method, ultimately exhibiting a sensitivity

of 0.89 for identifying high-risk PCa cases. Ishioka et al. (97)

developed a fully automated PCa detection system using patients’

T2W sequence data, combining two distinct algorithms and

demonstrating an AUC of 0.793. Wang et al. (98) compared the

detection capabilities of DLAs and non-DLAs in differentiating

PCa, using T2W sequences from prostate MRI findings of 172

patients, which included 79 patients with PCa and 93 with benign

prostatic hyperplasia (BPH). The final ROC curve value was 0.84 for

the DL model, compared to 0.70 for the non-DL model. Sanford

et al. (99) conducted PI-RADS scoring with a CNN trained on T2W/

ADC/high-b values, confirming that DLAs possess a PCa

assessment potential comparable to clinical PI-RADS scoring.

Yang et al. (31) collected T2W and DWI sequences from prostate

MRI findings of 160 patients and built two parallel deep CNNs. The
Frontiers in Oncology 05
final features extracted by these two CNNs were input into a

classifier based on the support vector machine algorithm,

ultimately achieving spontaneous identification of PCa (Table 1).
3.1.2 Segmentation of the prostate gland
The clinical measurement of prostate-specific antigen density

(PSA-D) is closely related to prostate volume (PV), and PSA-D

serves as an indicator of prostate cancer (PCa), with higher PSA-D

values suggesting a greater likelihood of clinically significant PCa

(100–102). PV is employed to diagnose BPH in clinical settings and

assists urologists in selecting suitable surgical procedures and

medication strategies for BPH patients (103–105). TRUS is the

most common imaging method for calculating PV in clinical

practice (106), but it is susceptible to significant measurement

errors when the prostate has an irregular shape. Computing PV

based on pixel size and layer thickness, in which the prostate gland

is segmented on each MRI image, may be more accurate. In a

clinical setting, determinization of the type of surgery, such as

prostate tissue-preserving surgery and fascial-sparing surgery

requires precise differentiation of prostate gland boundaries.

Preservation of the neurovascular bundle for performing the

nerve-sparing radical prostatectomy (107) to save the erectile

function and sparing of the pelvic fascia for fascial-sparing radical

prostatectomy (108) to prevent positive surgical margins followed

by high risk of clinical recurrences rely on preoperative imaging

guidance. In the case of PCa radiotherapy (discussed in more detail

later), precise MRI-guided segmentation in radiotherapy

significantly improves target accuracy, effectively prevents damage

to normal prostate tissues surrounding the tumor, and reduces toxic

side effects (109). Hence, accurate, robust, and efficient MRI-guided

segmentation of the prostate gland is crucial for evaluating PCa

tumors, calculating PV, selecting surgical options for prostate

abnormalities, outlining target areas for radiation planning, and

monitoring progressive changes in tumor lesions. However, due to

heterogeneity in MRI imaging quality and signal intensity, as well as

interference from periprostatic tissues and organs like the bladder

or rectum, prostate segmentation remains highly challenging (110,
TABLE 1 Currently available models of DL-mpMRI-based PCa detection or segmentation.

Author [Reference] Year Sample sizes MRI sequences Evaluation

Schelb P. et al. (83) 2019 250 + 62 T2, ADC, DWI

Xu H. et al. (84) 2019 346 T2, ADC 93.0% Accuracy; 0.95 AUC

Chen Y. et al. (85) 2020 136 T2, ADC

Arif M. et al. (86) 2020 292 T2, ADC 76.0% Accuracy; 0.89 AUC

Cao R. et al. (17) 2021 427 + 126 T2, ADC

Ushinsky A. et al. (87) 2021 287 T2 0.898 DSC

Bardis M. et al. (88) 2021 242 T2 0.940 DSC

Soerensen S.J.C. et al. (89) 2021 156 T2 0.92 ± 0.02 DSC

Soni M. et al. (90) 2022 140 T2, ADC 0.654 DSC, 0.695 sensitivity, 0.970 specificity

Li D. et al. (91) 2022 200
T2, DWI,
ADC

0.79 AUC
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111). Applying DL for accurate prostate gland segmentation on

MRI images could facilitate more precise and easy determination of

PV and prostate boundaries. CNNs do not require complex feature

extraction and are widely utilized for medical image segmentation

(112, 113). Zhu et al. (114) developed a three-dimensional (3D)

deep learning model containing dense blocks to segment the

prostate gland. The 3D structures enable the network to fully

exploit the relationship between adjacent images, and the dense

blocks make complete use of both shallow and deep information,

achieving a DSC of 0.82. Yan et al. (115) proposed a

backpropagation neural network that integrates the optimal

combination selected from multi-level feature extraction into a

single model for prostate MRI image segmentation, achieving a

DSC of 0.84, an average increase of 3.19% compared to traditional

ML segmentation algorithms based on random forests. To et al.

(116) segmented MRI images and identified PCa using a 3D deep

dense multipath CNN constructed from T2W and ADC sequences,

achieving DSCs of 0.95 and 0.89 in two independent test sets,

respectively. Dai et al. (117) developed a mask region-based CNN

for prostate gland and intraprostatic lesion segmentation, showing

that this end-to-end DL model could automatically segment the

prostate gland and identify suspicious lesions directly from prostate

MRI images without manual intervention, demonstrating its

potential to guide clinicians in tumor delineation.
3.2 Advanced radiotherapy of PCa

Radiotherapy is a vital component of PCa treatment and relies

on a complex series of multimodal medical imaging techniques,

such as computed tomography (CT), MRI, cone-beam CT, and

positron emission tomography, to localize tumors, establish

radiotherapy treatment plans, and assess radiotherapy efficacy

(118). Radiotherapy is an indispensable treatment modality for

cancer patients, either as neoadjuvant or postoperative therapy, in

combination with chemotherapy (119, 120). The main goal of

radiotherapy is to maximize the therapeutic gain ratio by

delivering an effective radiation dose to the planned target volume

(PTV) and avoiding unnecessary radiation exposure to adjacent

healthy tissues and organs at risk (OARs) (121, 122). However,

manual segmentation of the prostate gland, which is necessary for

accurate mapping of PTV and OARs, is prone to errors and can

result in less accurate and sensitive outcomes than those desired

clinically. In addition, respiratory movements, setup errors, and

fluctuations in body weight can lead to displacement of PTV and

OARs, potentially resulting in under-measurement of the radiation

dose received by the PTV or over-measurement of the radiation

dose delivered to OARs (123). To achieve precise tumor localization

and appropriate treatment, continuous technological advances have

led to the development of precision therapy, such as intensity-

modulated radiotherapy (IMRT) and 3D conformal radiation

therapy, which aim to provide personalized, precise anticancer

treatment by setting an appropriate radiation dose according to

the tumor shape while avoiding radiation exposure to OARs as

much as possible (124–126). Although precision therapy has

improved the accuracy of radiotherapy to some extent, further
Frontiers in Oncology 06
optimization is necessary to achieve the desired efficacy. Therefore,

image-guided adaptive radiotherapy (ART) has emerged as a

potential solution to overcome PTV and OAR displacement

caused by various factors (123, 127, 128).

3.2.1 ART technology
ART technology allows for systematic monitoring of target

lesions and changes in adjacent tissues based on imaging features

to optimize radiotherapy plans further (123, 128, 129). ART enables

the acquisition of feedback and tracking of target area-related

information primarily through offline, online, and real-time

modes (129, 130). For instance, offline ART involves measuring

setup errors on MRI images obtained during the patient’s initial few

treatments, after which the clinical target volume (CTV) coverage is

adjusted, and both the dose and treatment plan for subsequent

fractions are modified (130, 131). Online ART calculates the

necessary data based on the patient’s anatomical imaging

information acquired at the time, allowing for modifications to

the radiotherapy plan that are directly applied to the current

treatment (129–131). Real-time ART involves intra-fraction and

inter-beam reprogramming and automatic adjustment of the

radiotherapy plan during treatment execution based on dynamic

tracking of radiation dose and anatomical details of the target area

without manual intervention (129–131). Since the anatomical and

geometric variations of PCa are influenced by the degree of bladder

and rectal filling, the morphology, location, and volume of PTV and

OARs may differ between treatments. Consequently, offline ART is

not flexible enough to accommodate these changes (131). While

CTV expansion is often used clinically to compensate for these

limitations, it can result in increased post-radiotherapy toxicities

(132). Although online ART offers improved accuracy compared to

offline ART, its time-consuming nature limits its clinical application

to some extent. Real-time ART overcomes the drawbacks of both

offline and online ART and has been implemented in clinical

practice (133), but its safety and robustness require validation due

to the lack of a sufficiently comprehensive database for model

adaptation and training (134). As mentioned in Section 3.1.2,

significant progress has been made in DL-based automatic

segmentation of the prostate gland. However, research on

developing subsequent radiotherapy systems remains

underexplored. Developing an accurate and efficient automated

radiotherapy delivery system using DL technology to enhance

radiotherapy outcomes has far-reaching clinical implications.

Sprouts et al. (135) developed a virtual treatment planner (VTP)

based on deep reinforcement learning (DRL) to implement a

treatment planning system. The VTP, based on the Q-learning

framework, was evaluated using 50 samples, achieving a mean

ProKnow plan score of 8.14 ± 1.27 (standard deviation),

indicating its potential for IMRT planning in PCa. The

application of the conventional ϵ-greedy algorithm for training

VTP is time-consuming, restricting its clinical use. Shen et al. (136)

introduced a knowledge-guided DRL to adjust treatment plan

parameters to enhance VTP training efficiency, achieving a plan

quality score of 8.82 ( ± 0.29). Lempart et al. (137) proposed a

densely connected DLmodel based on a modified U-Net, trained on

a triplet of 160 patients to predict dose distribution for volumetric-
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modulated arc therapy. The model maintained the mean percentage

error within 1.9% for both CTV and PTV and within 2.6% for OAR,

demonstrating its capacity to partially automate the radiotherapy

planning process and accelerate treatment progress.

3.2.2 MRI-only radiotherapy
AlthoughMRI offers excellent soft-tissue contrast and facilitates

relatively precise tumor segmentation, it does not provide the

electron density map or Hounsfield units needed for radiation

dose calculation. Consequently, it is essential to map relative

regions such as CTV, PTV, and OARs on MRI, after which the

outlined contours are mapped to CT via image alignment for

clinical radiotherapy planning (134, 138, 139). Combining MRI

and CT simulations in PCa radiotherapy plans may reduce acute

urogenital toxicity (140). However, the labor-intensive process of

CT and MRI alignment and the challenges in achieving full

alignment can result in systematic errors, potentially leading to

dose distribution issues in the target region and diminishing

radiotherapy effectiveness (141). To address these problems,

recently developed MRI simulators enable the conversion of MRI

data to synthetic CT (sCT), allowing radiation dose measurements

to directly contribute to radiotherapy planning and establishing

MRI-only radiotherapy (138, 139, 142) (Figure 3). Common

approaches for converting MRI data to sCT include bulk density

assignment–based methods, voxel-based methods, and atlas-based

methods (143, 144). Currently, a bulk density assignment–based

system called magnetic resonance for calculating attenuation

(MRCAT™ by Philips) and an atlas-based system called

MriPlanner™ (by Spectronic Medical) have been employed for

automatic generation of pelvic sCT in clinical practice (145, 146).

MriPlanner™ has demonstrated promising performance, as

evaluated in the MR-OPERA and MR-PROTECT studies (147,

148). In contrast to sCT generation methods, MRCAT™, due to its

bulk density assignment–based nature, requires multiple MRI

sequences, such as air, liquid, and bone, each assigned to

corresponding electron density or Hounsfield unit values

necessary for creating a CT image (144, 149) (Table 2). As

illustrated previously, the conventional approach to radiotherapy

planning, which involves the use of both CT and MRI, necessitates

manual intervention for aligning and fusing CT and MRI images, as

well as determining the CTV, PTV, and OARs. This manual

intervention considerably reduces both accuracy and efficiency.

However, by employing DL, which automatically extracts

informative features from a large number of training samples to
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establish a nonlinear mapping from MRI to CT (150), a trained

model can swiftly generate highly precise synthetic CT (sCT)

images in just a few seconds. These sCT images provide more

accurate guidance for ART (151). Fu et al. (152) utilized two-

dimensional (2D) and three-dimensional (3D) fully connected

CNN based on U-Net to generate pelvic region sCT, with results

indicating that accurate sCT was effectively executed using DLA.

Conditional GAN, developed by adding a discriminator to U-Net,

enable the generated sCT to provide more details, enhancing sCT

accuracy and robustness and allowing for more precise

radiotherapy planning (153, 154). CycleGAN (cGAN) is a

modified adversarial network based on GAN, with additional

generators and discriminators incorporated for improved

unpaired training data (155, 156). Liu et al. (157) proposed a

multi-CycleGAN network and designed a new generator, Z-Net,

to improve anatomical details. This approach exhibited lower mean

error and mean absolute error and higher dose accuracy of the

sCT (Table 3).
FIGURE 3

Algorithm of CT+MRI and MRI-only radiotherapy technique. Created
with BioRender.com.
TABLE 2 MRCAT™ (Magnetic Resonance for Calculating Attenuation) vs. MriPlanner™.

Magnetic Resonance for Calculating Attenuation MriPlanner™

Method Bulk density assignment-based Atlas-based

Region Pelvic region Pelvic region

MRI sequence engaged Multi-sequences needed (including air, liquid, and bone) A single sequence is sufficient

Accuracy determination Determined by the accuracy of segmentation Determined by the MRI-MRI alignment

Time required Longer Less
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3.3 Prognostic assessment of PCa

To improve prognosis monitoring of PCa and reduce mortality,

it is essential to consider patients at low risk during active

surveillance and those who have undergone radical prostatectomy

(163). The European Association of Urology guidelines widely

recognize PSA as the primary metric for assessing BCR in clinical

practice (164). To mitigate diagnostic bias, leveraging the precise

anatomical information provided by MRI is invaluable, as it offers

non-invasive insights. This is particularly crucial since PSA levels

can fluctuate and be influenced by various factors (165, 166).

Furthermore, the role of mpMRI in assessing PCa recurrence has

gained importance (167), underscoring the need for comprehensive

investigation into MRI-based PCa recurrence prediction. Yan et al.

(168) conducted a multicenter study using a DL technique and a

novel model called deep radiomic signature for BCR prediction.

They combined quantitative features and radiomics extracted from

prostate MRI with DL-based survival analysis. The performance of

the model was evaluated using data from approximately 600

patients who underwent radical prostatectomy, achieving

maximum AUC values of 0.85 and 0.88 for BCR-free survival

prediction at 3 years and 5 years, respectively. In addition to

recurrence prediction, there should be a significant focus on

monitoring metastasis, particularly considering the high

occurrence rate of bone metastases in over 80% of patients with

advanced PCa (169). The accuracy and sensitivity of conventional

bone scintigraphy for detecting skeletal metastases have been

questioned (170). Therefore, of the potential in detecting earlier

PCa metastasis using PSMA PET-CT and MRI has been established

(170, 171). As part of a routine radiological examination for

suspected PCa, Liu et al. successfully detected and segmented

pelvic bone metastases using dual 3D U-net DLAs rely on T1-

weighted imaging and diffusion-weighted imaging sequences (172).

Through two rounds of evaluation, they achieved a mean DSC value

above 0.85 for pelvic bone segmentation and a maximum AUC of

0.85 for metastasis detection, demonstrating accurate detection and

segmentation of pelvic bone metastases.
4 Discussion

Prostate MRI holds significant potential as a first-line diagnostic

and therapeutic approach for prostate gland abnormalities.
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However, the broader application of prostate MRI is currently

limited for various reasons. CNN-based DL models have been

employed for fully automatic target segmentation. More

importantly, DLA can be easily applied to large-scale samples,

making them suitable for real-world clinical practice. In addition

to their utility in detecting and segmenting lesions on prostate MRI,

DLA have a wide range of applications. Presently, some studies have

demonstrated the potential applications of DL in multiple areas. A

few studies have employed DL to predict the Gleason score of PCa

by using DLAs to assess pathological sections, which demonstrated

diagnostic power equal to that of pathologists (173–175). DL has

also yielded satisfactory results in prostate gland segmentation on

TRUS images (176–178). In radiotherapy, prostate gland and

adjacent organ contouring based on DL auto-contouring

algorithms may reduce workload and inter-observer variability, as

evidenced by several clinical evaluations conducted at different

radiotherapy centers (179, 180). Additionally, using DLA for

detecting and tracking marker seeds during PCa treatment

enhances precise target dosage delivery and minimizes radiation-

induced adverse events in normal tissues surrounding the tumor

(181, 182). Remarkably, DL has been employed for PI-RADS

scoring based on mpMRI of the prostate gland in real-world

settings, yielding results similar to PI-RADS scores determined by

radiologist experts (83). In recent times, there has been notable

progress in integrating DL with nomograms. This integration

enables the inclusion of crucial variables such as PSA, PV, patient

age, free/total PSA ratio, and PSA-D into the diagnostic process of

PCa using MRI data (183, 184).
4.1 Limitations and outlook

The research examined in this review highlights the significant

potential and wide-ranging prospects of DL applications. Future

studies should concentrate on employing DL in prostate MRI for in-

depth understanding. Firstly, there is a strong demand for 3D

information processing. Presently, most available DLAs rely on

2D images for feature extraction and analysis, indicating that these

DLAs may not be suitable for extracting 3D spatial anatomical

information from clinically obtained patient images. Although DL

has been employed for segmenting 3D medical images of the liver

and cardiovascular system (185), there is a scarcity of research on

using DL for segmenting 3D images of the prostate gland,
TABLE 3 Recent designed models of deep learning–based synthetic CT generation in the prostate gland or pelvic region.

Model Author, Reference Year Sample size Target Time of sCT generation (s)

U-net Chen et al. (158) 2018 36 Prostate gland 3.8–7.7

U-net Arabi et al. (159) 2018 30 Pelvic region 9

cGAN Nie et al. (160) 2018 21 Pelvic region 30

cGAN Maspero et al. (161) 2018 32 Pelvic region 5.6

U-net Fu et al. (152) 2019 16 Prostate gland 5.5

cGAN Gusumano et al. (162) 2020 40 Pelvic region 175 ± 43
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necessitating further evaluation. Developing computational

segmentation methods appropriate for 3D medical images while

preserving the high performance of DL models for PCa detection

and diagnosis remains highly challenging. In addition, future

research should continually extend to multimodal and

multisequence data analyses. Currently, most prostate MRI

studies include only T2W and DWI sequences. Despite the

diminishing role of DCE according to recent PI-RADS guidelines

(186), incorporating ADC into the analysis and fusing multiple

modalities of feature descriptions for 3D tumor image segmentation

may further enhance the accuracy of CNN in identifying PCa.

Furthermore, the effectiveness of using DCE sequence in detecting

PCa is still debated, given its time-consuming nature and the

associated risk of nephrogenic systemic fibrosis (187, 188).

Therefore, focusing on biparametric MRI, which assesses only

T2W and DWI sequences, should be prioritized for rapid

screening. Improving CNN architectures may also enhance the

computational capabilities of DLAs. Based on cumulative findings,

we propose that parallelizing sub-networks analyzing different

sequences and then inputting the final result into the classifier or

connecting various sub-networks in series and generating the final

result directly could yield promising outcomes. Utilizing diverse

DLAs, developed by modifying neural network architectures, can

further improve detection effectiveness. One primary limitation of

DL, not only in medical image processing but also in other

professional fields, is the incomprehensibility and lack of

interpretability of predictions and decisions made by DLAs (189–

191). This becomes critically important in cases where DL-based

decisions can result in significant consequences, particularly in

medical and biological contexts (189, 191). To prevent

misdiagnosis and mistreatment that may lead to life-threatening

conditions, the rationale and evidence for DL-provided conclusions

must be clarified. Developing “explainable AI” (XAI) for accurate

predictions with understandable assessment criteria should be

further investigated as a future direction. More ambitiously,

comprehending complex biological contexts, such as molecular

mechanisms, genetic expression, and cellular microenvironments,

is crucial for developing novel biomarkers, discovering disease

pathogenesis, proposing new treatment strategies, and evaluating

analytical approach performance (192, 193). All these

advancements necessitate updating CNN architectures to not only

make predictions based on data-driven DL approaches but also

learn the biological mechanisms behind the data by integrating

biological knowledge into the learning process (193, 194). A new

concept called digital biopsy involves analyzing digital images and

identifying characteristic features focusing on tumor heterogeneity

rather than its contour, using computer power from multi-omics to

aid in diagnosing or predicting various diseases (195). Investigating

DL-based digital biopsy techniques will significantly contribute to

assessing and predicting diseases non-invasively, making it a

valuable tool in clinical settings. Digital biopsy holds considerable

potential to become the “next-generation biopsy” for patients with

low risk PCa, substantially benefiting healthcare.
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5 Conclusion

DLAs have shown promising results in tumor identification

and detection, lesion segmentation, PCa grading and scoring, as

well as postoperative recurrence and prognostic outcome

prediction, making them gain significant attention and play

important roles in urology. However, the diagnostic accuracy of

DL models still has room for improvement, and the amount of

annotated sample data used is relatively limited. Therefore,

optimization of models and algorithms, expansion of medical

database resources, and combination of multi-omics data and

comprehensive analysis of various morphological data will

enhance the usefulness of DL for the diagnosis and treatment of

urological diseases. Additionally, continued exploration in

developing explainable AI will bring greater transparency and

trustworthiness to DL. Undoubtedly, DL has shown a steep

learning curve in the interpretation of prostate MRI (196), and

its advent will benefit not only radiologists but also general

physicians who lack systematic and specialized imaging

interpretation training in terms of imaging evaluation of

prostatic diseases. We believe that with advancements in

technology and research, a significant leap in DLA development

would occur, which would be beneficial in PCa diagnosis

and treatment.
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