6 research outputs found

    The Incidence of Lysosomal Acid Lipase Deficiency in the Russian Population

    Get PDF
    Lysosomal acid lipase deficiency is a rare hereditary progressive disease of lipid metabolism leading to the development of atherosclerosis, hepatosplenomegaly, liver cirrhosis, malabsorption, and other symptoms. In the absence of specific treatment, the prognosis for the patient is unfavourable, so timely diagnosis of the disease is extremely important. The incidence of lysosomal acid lipase deficiency in the Russian Federation is unknown. Given its rarity, there is a high probability of hypodiagnosis. In this regard, the presented results of the study of this disease prevalence are of particular relevance

    Whole-exome sequencing provides insights into monogenic disease prevalence in Northwest Russia

    No full text
    Abstract Background Allele frequency data from large exome and genome aggregation projects such as the Genome Aggregation Database (gnomAD) are of ultimate importance to the interpretation of medical resequencing data. However, allele frequencies might significantly differ in poorly studied populations that are underrepresented in large‐scale projects, such as the Russian population. Methods In this work, we leveraged our access to a large dataset of 694 exome samples to analyze genetic variation in the Northwest Russia. We compared the spectrum of genetic variants to the dbSNP build 151, and made estimates of ClinVar‐based autosomal recessive (AR) disease allele prevalence as compared to gnomAD r. 2.1. Results An estimated 9.3% of discovered variants were not present in dbSNP. We report statistically significant overrepresentation of pathogenic variants for several Mendelian disorders, including phenylketonuria (PAH, rs5030858), Wilson's disease (ATP7B, rs76151636), factor VII deficiency (F7, rs36209567), kyphoscoliosis type of Ehlers‐Danlos syndrome (FKBP14, rs542489955), and several other recessive pathologies. We also make primary estimates of monogenic disease incidence in the population, with retinal dystrophy, cystic fibrosis, and phenylketonuria being the most frequent AR pathologies. Conclusion Our observations demonstrate the utility of population‐specific allele frequency data to the diagnosis of monogenic disorders using high‐throughput technologies

    Clinical and Genetic Characteristics of Pediatric Patients with Hypophosphatasia in the Russian Population

    No full text
    (1) Hypophosphatasia (HPP) is a rare inherited disease caused by mutations (pathogenic variants) in the ALPL gene which encodes tissue-nonspecific alkaline phosphatase (TNSALP). HPP is characterized by impaired bone mineral metabolism due to the low enzymatic activity of TNSALP. Knowledge about the structure of the gene and the features and functions of various ALPL gene variants, taking into account population specificity, gives an understanding of the hereditary nature of the disease, and contributes to the diagnosis, prevention, and treatment of the disease. The purpose of the study was to describe the spectrum and analyze the functional features of the ALPL gene variants, considering various HPP subtypes and clinical symptoms in Russian children. (2) From 2014–2021, the study included the blood samples obtained from 1612 patients with reduced alkaline phosphatase activity. The patients underwent an examination with an assessment of their clinical symptoms and biochemical levels of TNSALP. DNA was isolated from dried blood spots (DBSs) or blood from the patients to search for mutations in the exons of the ALPL gene using Sanger sequencing. The PCR products were sequenced using a reagent BigDye Terminator 3.1 kit (Applied Biosystems). Statistical analysis was performed using the GraphPad Prism 8.01 software. (3) The most common clinical symptoms in Russian patients with HPP and two of its variants (n = 22) were bone disorders (75%), hypomyotonia (50%), and respiratory failure (50%). The heterozygous carriage of the causal variants of the ALPL gene was detected in 225 patients. A total of 2 variants were found in 27 patients. In this group (n = 27), we identified 28 unique variants of the ALPL gene, of which 75.0% were missense, 17.9% were frameshift, 3.6% were splicing variants, and 3.6% were duplications. A total of 39.3% (11/28) of the variants were pathogenic, with two variants being probably pathogenic, and 15 variants had unknown clinical significance (VUS). Among the VUS group, 28.6% of the variants (7/28) were discovered by us for the first time. The most common variants were c.571G > A (p.Glu191Lys) and c.1171del (Arg391Valfs*12), with frequencies of 48.2% (13/28) and 11% (3/28), respectively. It was found that the frequency of nonsense variants of the ALPL gene was higher (p < 0.0001) in patients with the perinatal form compared to the infantile and childhood forms of HPP. Additionally, the number of homozygotes in patients with the perinatal form exceeded (p < 0.01) the frequencies of these genotypes in children with infantile and childhood forms of HPP. On the contrary, the frequencies of the compound-heterozygous and heterozygous genotypes were higher (p < 0.01) in patients with infantile childhood HPP than in perinatal HPP. In the perinatal form, residual TNSALP activity was lower (p < 0.0005) in comparison to the infantile and childhood (p < 0.05) forms of HPP. At the same time, patients with the heterozygous and compound-heterozygous genotypes (mainly missense variants) of the ALPL gene had greater residual activity (of the TNSALP protein) regarding those homozygous patients who were carriers of the nonsense variants (deletions and duplications) of the ALPL gene. Residual TNSALP activity was lower (p < 0.0001) in patients with pathogenic variants encoding the amino acids from the active site and the calcium and crown domains in comparison with the nonspecific region of the protein
    corecore