259 research outputs found

    Ground-state phases of rung-alternated spin-1/2 Heisenberg ladder

    Full text link
    The ground-state phase diagram of Heisenberg spin-1/2 system on a two-leg ladder with rung alternation is studied by combining analytical approaches with numerical simulations. For the case of ferromagnetic leg exchanges a unique ferrimagnetic ground state emerges, whereas for the case of antiferromagnetic leg exchanges several different ground states are stabilized depending on the ratio between exchanges along legs and rungs. For the more general case of a honeycomb-ladder model for the case of ferromagnetic leg exchanges besides usual rung-singlet and saturated ferromagnetic states we obtain a ferrimagnetic Luttinger liquid phase with both linear and quadratic low energy dispersions and ground state magnetization continuously changing with system parameters. For the case of antiferromagnetic exchanges along legs, different dimerized states including states with additional topological order are suggested to be realized

    Frustrated ferromagnetic spin-1/2 chain in a magnetic field: The phase diagram and thermodynamic properties

    Full text link
    The frustrated ferromagnetic spin-1/2 Heisenberg chain is studied by means of a low-energy field theory as well as the density-matrix renormalization group and exact diagonalization methods. Firstly, we study the ground-state phase diagram in a magnetic field and find an `even-odd' (EO) phase characterized by bound pairs of magnons in the region of two weakly coupled antiferromagnetic chains. A jump in the magnetization curves signals a first-order transition at the boundary of the EO phase, but otherwise the curves are smooth. Secondly, we discuss thermodynamic properties at zero field, where we confirm a double-peak structure in the specific heat for moderate frustrating next-nearest neighbor interactions.Comment: 4 pages RevTex4, 4 figures. Minor changes, title modified. Additional material is available here: http://www.theorie.physik.uni-goettingen.de/~honecker/j1j2-td

    Interplay between Symmetric Exchange Anisotropy, Uniform Dzyaloshinskii-Moriya Interaction and Magnetic Fields in the Phase Diagram of Quantum Magnets and Superconductors

    Full text link
    We theoretically study the joint influence of uniform Dzyaloshinskii-Moriya (DM) interactions, symmetric exchange anisotropy (with its axis parallel to the DM vector) and arbitrarily oriented magnetic fields on one-dimensional spin 1/2 antiferromagnets. We show that the zero-temperature phase diagram contains three competing phases: (i) an antiferromagnet with Neel vector in the plane spanned by the DM vector and the magnetic field, (ii) a {\em dimerized} antiferromagnet with Neel vector perpendicular to both the DM vector and the magnetic field, and (iii) a gapless Luttinger liquid. Phase (i) is destroyed by a small magnetic field component along the DM vector and is furthermore unstable beyond a critical value of easy-plane anisotropy, which we estimate using Abelian and non-Abelian bosonization along with perturbative renormalization group. We propose a mathematical equivalent of the spin model in a one-dimensional Josephson junction (JJ) array located in proximity to a bulk superconductor. We discuss the analogues of the magnetic phases in the superconducting context and comment on their experimental viability.Comment: 20 pages, 16 figures; submitted to Phys. Rev.

    Dynamical Structure Factors for Dimerized Spin Systems

    Full text link
    We discuss the transition strength between the disordered ground state and the basic low-lying triplet excitation for interacting dimer materials by presenting theoretical calculations and series expansions as well as inelastic neutron scattering results for the material KCuCl_3. We describe in detail the features resulting from the presence of two differently oriented dimers per unit cell and show how energies and spectral weights of the resulting two modes are related to each other. We present results from the perturbation expansion in the interdimer interaction strength and thus demonstrate that the wave vector dependence of the simple dimer approximation is modified in higher orders. Explicit results are given in 10th order for dimers coupled in 1D, and in 2nd order for dimers coupled in 3D with application to KCuCl_3 and TlCuCl_3.Comment: 17 pages, 6 figures, part 2 is based on cond-mat/021133

    Universal emergence of the one-third plateau in the magnetization process of frustrated quantum spin chains

    Full text link
    We present a numerical study of the magnetization process of frustrated quantum spin-S chains with S=1, 3/2, 2 as well as the classical limit. Using the exact diagonalization and density-matrix renormalization techniques, we provide evidence that a plateau at one third of the saturation magnetization exists in the magnetization curve of frustrated spin-S chains with S>1/2. Similar to the case of S=1/2, this plateau state breaks the translational symmetry of the Hamiltonian and realizes an up-up-down pattern in the spin component parallel to the external field. Our study further shows that this plateau exists both in the cases of an isotropic exchange and in the easy-axis regime for spin-S=1, 3/2, and 2, but is absent in classical frustrated spin chains with isotropic interactions. We discuss the magnetic phase diagram of frustrated spin-1 and spin-3/2 chains as well as other emergent features of the magnetization process such as kink singularities, jumps, and even-odd effects. A quantitative comparison of the one-third plateau in the easy-axis regime between spin-1 and spin-3/2 chains on the one hand and the classical frustrated chain on the other hand indicates that the critical frustration and the phase boundaries of this state rapidly approach the classical result as the spin S increases.Comment: 15 pages RevTex4, 13 figure

    Four-spin-exchange- and magnetic-field-induced chiral order in two-leg spin ladders

    Full text link
    We propose a mechanism of a vector chiral long-range order in two-leg spin-1/2 and spin-1 antiferromagnetic ladders with four-spin exchanges and a Zeeman term. It is known that for one-dimensional quantum systems, spontaneous breakdown of continuous symmetries is generally forbidden. Any vector chiral order hence does not appear in spin-rotationally [SU(2)]-symmetric spin ladders. However, if a magnetic field is added along the S^z axis of ladders and the SU(2) symmetry is reduced to the U(1) one, the z component of a vector chiral order can emerge with the remaining U(1) symmetry unbroken. Making use of Abelian bosonization techniques, we actually show that a certain type of four-spin exchange can yield a vector chiral long-range order in spin-1/2 and spin-1 ladders under a magnetic field. In the chiral-ordered phase, the Z_2 interchain-parity (i.e., chain-exchange) symmetry is spontaneously broken. We also consider effects of perturbations breaking the parity symmetry.Comment: 8 pages, 1 figure, RevTex, published versio

    Drastic Change of Magnetic Phase Diagram in Doped Quantum Antiferromagnet TlCu1−x_{1-x}Mgx_xCl3_3

    Full text link
    TlCuCl3_3 is a coupled spin dimer system, which has a singlet ground state with an excitation gap of Δ/gμB\Delta/g\mu_{\mathrm B} = 5.5 T. TlCu1−x_{1-x}Mgx_xCl3_3 doped with nonmagnetic Mg2+^{2+} ions undergoes impurity-induced magnetic ordering. Because triplet excitation with a finite gap still remains, this doped system can also undergo magnetic-field-induced magnetic ordering. By specific heat measurements and neutron scattering experiments under a magnetic field, we investigated the phase diagram in TlCu1−x_{1-x}Mgx_xCl3_3 with x∼0.01x\sim 0.01, and found that impurity- and field-induced ordered phases are the same. The gapped spin liquid state observed in pure TlCuCl3_3 is completely wiped out by the small amount of doping.Comment: 9 pages, 5 figures, jpsj2 class file, to be published in J. Phy. Soc. Jpn. Vol.75 No.3 (2006); layout changed, unrelated figure remove

    Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets

    Full text link
    We have found the exact groundstate for a large class of antiferromagnetic spin-1 models with nearest-neighbour interactions on a linear chain. All groundstate properties can be calculated. The groundstate is determined as a matrix product of individual site states and has the properties of the Haldane scenario.Comment: 8 pages (plain tex), preprint cologne-93-471
    • …
    corecore