82 research outputs found

    Quasi-universal transient behavior of a nonequilibrium Mott insulator driven by an electric field

    Full text link
    We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field, and that for a broad range of field strengths, a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments, but shows that an interesting new quasi-universal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasi-universal behavior of the current and spectral function for different values of the hopping.Comment: (5 pages, 5 figures, ReVTeX

    Simulation of inhomogeneous distributions of ultracold atoms in an optical lattice via a massively parallel implementation of nonequilibrium strong-coupling perturbation theory

    Full text link
    We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10d×10d10^d\times 10^d matrix, with d>6d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in non-equilibrium setups without mass transport.Comment: 14 pages, 9 figure

    Thermodynamics of the Quantum Critical Point at Finite Doping in the 2D Hubbard Model: A Dynamical Cluster Approximation Study

    Get PDF
    We study the thermodynamics of the two-dimensional Hubbard model within the dynamical cluster approximation. We use continuous time quantum Monte Carlo as a cluster solver to avoid the systematic error which complicates the calculation of the entropy and potential energy (double occupancy). We find that at a critical filling, there is a pronounced peak in the entropy divided by temperature, S/T, and in the normalized double occupancy as a function of doping. At this filling, we find that specific heat divided by temperature, C/T, increases strongly with decreasing temperature and kinetic and potential energies vary like T^2 ln(T). These are all characteristics of quantum critical behavior.Comment: 4 pages, 4 figures. Submitted to Phys. Rev. B Rapid Communications on June 27, 200

    Quantum Criticality and Incipient Phase Separation in the Thermodynamic Properties of the Hubbard Model

    Full text link
    Transport measurements on the cuprates suggest the presence of a quantum critical point hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single particle quantities, such as the spectral function, the quasiparticle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudogap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbor hopping t' we find a classical critical point at temperature T_c. This classical critical point is found to be associated with a phase separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudogap state, respectively. Since the critical temperature T_c extrapolates to zero as t' vanishes, we conclude that a quantum critical point connects the Fermi-liquid to the pseudogap region, and that the marginal-Fermi-liquid behavior in its vicinity is the analogous of the supercritical region in the liquid-gas transition.Comment: 18 pages, 9 figure

    Theoretical Description of Coherent Doublon Creation via Lattice Modulation Spectroscopy

    Full text link
    Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitative prediction for the presence of a nonlinear "two-photon" excitation at strong modulation amplitudes.Comment: 5 pages, 5 figure

    Role of the van Hove Singularity in the Quantum Criticality of the Hubbard Model

    Get PDF
    A quantum critical point (QCP), separating the non-Fermi liquid region from the Fermi liquid, exists in the phase diagram of the 2D Hubbard model [Vidhyadhiraja et. al, Phys. Rev. Lett. 102, 206407 (2009)]. Due to the vanishing of the critical temperature associated with a phase separation transition, the QCP is characterized by a vanishing quasiparticle weight. Near the QCP, the pairing is enhanced since the real part of the bare d-wave p-p susceptibility exhibits algebraic divergence with decreasing temperature, replacing the logarithmic divergence found in a Fermi liquid [Yang et. al, Phys. Rev. Lett. 106, 047004 (2011)]. In this paper we explore the single-particle and transport properties near the QCP. We focus mainly on a van Hove singularity (vHS) coming from the relatively flat dispersion that crosses the Fermi level near the quantum critical filling. The flat part of the dispersion orthogonal to the antinodal direction remains pinned near the Fermi level for a range of doping that increases when we include a negative next-near-neighbor hopping t' in the model. For comparison, we calculate the bare d-wave pairing susceptibility for non-interacting models with the usual two-dimensional tight binding dispersion and a hypothetical quartic dispersion. We find that neither model yields a vHS that completely describes the critical algebraic behavior of the bare d-wave pairing susceptibility. The resistivity, thermal conductivity, thermopower, and the Wiedemann-Franz Law are examined in the Fermi liquid, marginal Fermi liquid, and pseudo-gap doping regions. A negative next-near-neighbor hopping t' increases the doping region with marginal Fermi liquid character. Both T and negative t' are relevant variables for the QCP, and both the transport and the motion of the vHS with filling suggest that they are qualitatively similar in their effect.Comment: 15 pages, 17 figure
    corecore