3 research outputs found

    A High-Throughput Assay for In Vitro Determination of Release Factor-Dependent Peptide Release from a Pretermination Complex by Fluorescence Anisotropy—Application to Nonsense Suppressor Screening and Mechanistic Studies

    No full text
    Premature termination codons (PTCs) account for ~12% of all human disease mutations. Translation readthrough-inducing drugs (TRIDs) are prominent among the several therapeutic approaches being used to overcome PTCs. Ataluren is the only TRID that has been approved for treating patients suffering from a PTC disease, Duchenne muscular dystrophy, but it gives variable readthrough results in cells isolated from patients suffering from other PTC diseases. We recently elucidated ataluren’s mechanism of action as a competitive inhibitor of release factor complex (RFC) catalysis of premature termination and identified ataluren’s binding sites on the ribosome responsible for such an inhibition. These results suggest the possibility of discovering new TRIDs, which would retain ataluren’s low toxicity while displaying greater potency and generality in stimulating readthrough via the inhibition of termination. Here we present a detailed description of a new in vitro plate reader assay that we are using both to screen small compound libraries for the inhibition of RFC-dependent peptide release and to better understand the influence of termination codon identity and sequence context on RFC activity

    A High-Throughput Assay for In Vitro Determination of Release Factor-Dependent Peptide Release from a Pretermination Complex by Fluorescence Anisotropy—Application to Nonsense Suppressor Screening and Mechanistic Studies

    No full text
    Premature termination codons (PTCs) account for ~12% of all human disease mutations. Translation readthrough-inducing drugs (TRIDs) are prominent among the several therapeutic approaches being used to overcome PTCs. Ataluren is the only TRID that has been approved for treating patients suffering from a PTC disease, Duchenne muscular dystrophy, but it gives variable readthrough results in cells isolated from patients suffering from other PTC diseases. We recently elucidated ataluren’s mechanism of action as a competitive inhibitor of release factor complex (RFC) catalysis of premature termination and identified ataluren’s binding sites on the ribosome responsible for such an inhibition. These results suggest the possibility of discovering new TRIDs, which would retain ataluren’s low toxicity while displaying greater potency and generality in stimulating readthrough via the inhibition of termination. Here we present a detailed description of a new in vitro plate reader assay that we are using both to screen small compound libraries for the inhibition of RFC-dependent peptide release and to better understand the influence of termination codon identity and sequence context on RFC activity

    The tocopherol transfer protein mediates vitamin E trafficking between cerebellar astrocytes and neurons.

    No full text
    Alpha-tocopherol (vitamin E) is an essential nutrient that functions as a major lipid-soluble antioxidant in humans. The alpha-tocopherol transfer protein (TTP) binds α-tocopherol with high affinity and selectivity and regulates whole-body distribution of the vitamin. Heritable mutations in the TTPA gene result in familial vitamin E deficiency, elevated indices of oxidative stress, and progressive neurodegeneration that manifest primarily in spinocerebellar ataxia. Although the essential role of vitamin E in neurological health has been recognized for over 50 years, the mechanisms by which this essential nutrient is transported in the central nervous system are poorly understood. Here we found that, in the murine cerebellum, TTP is selectively expressed in glial fibrillary acidic protein-positive astrocytes, where it facilitates efflux of vitamin E to neighboring neurons. We also show that induction of oxidative stress enhances the transcription of the TtpA gene in cultured cerebellar astrocytes. Furthermore, secretion of vitamin E from astrocytes is mediated by an ABC-type transporter, and uptake of the vitamin into neurons involves the low-density lipoprotein receptor-related protein 1. Taken together, our data indicate that TTP-expressing astrocytes control the delivery of vitamin E from astrocytes to neurons, and that this process is homeostatically responsive to oxidative stress. These are the first observations that address the detailed molecular mechanisms of vitamin E transport in the central nervous system, and these results have important implications for understanding the molecular underpinnings of oxidative stress-related neurodegenerative diseases
    corecore