247 research outputs found
The True Destination of EGO is Multi-local Optimization
Efficient global optimization is a popular algorithm for the optimization of
expensive multimodal black-box functions. One important reason for its
popularity is its theoretical foundation of global convergence. However, as the
budgets in expensive optimization are very small, the asymptotic properties
only play a minor role and the algorithm sometimes comes off badly in
experimental comparisons. Many alternative variants have therefore been
proposed over the years. In this work, we show experimentally that the
algorithm instead has its strength in a setting where multiple optima are to be
identified
Social Bots: Human-Like by Means of Human Control?
Social bots are currently regarded an influential but also somewhat
mysterious factor in public discourse and opinion making. They are considered
to be capable of massively distributing propaganda in social and online media
and their application is even suspected to be partly responsible for recent
election results. Astonishingly, the term `Social Bot' is not well defined and
different scientific disciplines use divergent definitions. This work starts
with a balanced definition attempt, before providing an overview of how social
bots actually work (taking the example of Twitter) and what their current
technical limitations are. Despite recent research progress in Deep Learning
and Big Data, there are many activities bots cannot handle well. We then
discuss how bot capabilities can be extended and controlled by integrating
humans into the process and reason that this is currently the most promising
way to go in order to realize effective interactions with other humans.Comment: 36 pages, 13 figure
From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI
This paper reviews the field of Game AI, which not only deals with creating
agents that can play a certain game, but also with areas as diverse as creating
game content automatically, game analytics, or player modelling. While Game AI
was for a long time not very well recognized by the larger scientific
community, it has established itself as a research area for developing and
testing the most advanced forms of AI algorithms and articles covering advances
in mastering video games such as StarCraft 2 and Quake III appear in the most
prestigious journals. Because of the growth of the field, a single review
cannot cover it completely. Therefore, we put a focus on important recent
developments, including that advances in Game AI are starting to be extended to
areas outside of games, such as robotics or the synthesis of chemicals. In this
article, we review the algorithms and methods that have paved the way for these
breakthroughs, report on the other important areas of Game AI research, and
also point out exciting directions for the future of Game AI
An empirical investigation of simplified step-size adapatation in evolution strategies with a view to theory
Randomized direct-search methods for the optimization of a function f: R^n -> R given by a black box for f-evaluations are investigated. We consider the cumulative step-size adaptation (CSA) for the variance of multivariate zero-mean normal distributions. Those are commonly used to sample new candidate solutions within metaheuristics, in particular within the CMA Evolution Strategy (CMA-ES), a state-of-the-art direct-search method. Though the CMA-ES is very successful in practical optimization, its theoretical foundations are very limited because of the complex stochastic process it induces. To forward the theory on this successful method, we propose two simplifications of the CSA used within CMA-ES for step-size control. We show by experimental and statistical evaluation that they perform sufficiently similarly to the original CSA (in the considered scenario), so that a further theoretical analysis is in fact reasonable. Furthermore, we outline in detail a probabilistic/theoretical runtime analysis for one of the two CSA-derivatives
Capabilities of EMOA to detect and preserve equivalent Pareto subsets
Recent works in evolutionary multiobjective optimization suggest to shift the focus from solely evaluating optimization success in the objective space to also taking the decision space into account. They indicate that this may be a) necessary to express the users requirements of obtaining distinct solutions (distinct Pareto set parts or subsets) of similar quality (comparable locations on the Pareto front) in real-world applications, and b) a demanding task for the currently most commonly used algorithms.We investigate if standard EMOA are able to detect and preserve equivalent Pareto subsets and develop an own special purpose EMOA that meets these requirements reliably
Benchmarking evolutionary algorithms: Towards exploratory landscape analysis
We present methods to answer to basic questions that arise when benchmarking optimization algorithms. The first one is: which algorithm is the ‘best’ one? and the second one: which algorithm should I use for my real world problem? Both are connected and neither is easy to answer. We present methods which can be used to analyse the raw data of a benchmark experiment and derive some insight regarding the answers to these questions. We employ the presented methods to analyse the BBOB’09 benchmark results and present some initial findings
RedTNet: A network model for strategy games
In this work, we develop a simple, graph-based framework, RedTNet, for computational modeling of strategy games and simulations. The framework applies the concept of red teaming as a means by which to explore alternative strategies. We show how the model supports computer-based red teaming in several applications: realtime strategy games and critical infrastructure protection, using an evolutionary algorithm to automatically detect good and often surprising strategies
- …