2,538 research outputs found
Electric dipole response of He: Halo-neutron and core excitations
Electric dipole () response of He is studied with a fully
microscopic six-body calculation. The wave functions for the ground and excited
states are expressed as a superposition of explicitly correlated Gaussians
(CG). Final state interactions of three-body decay channels are explicitly
taken into account. The ground state properties and the low-energy
strength are obtained consistently with observations. Two main peaks as well as
several small peaks are found in the strength function. The peak at the
high-energy region indicates a typical macroscopic picture of the giant dipole
resonance, the out-of-phase proton-neutron motion. The transition densities of
the lower-lying peaks exhibit in-phase proton-neutron motion in the internal
region, out-of-phase motion near the surface region, and spatially extended
neutron oscillation, indicating a soft-dipole mode (SDM) and its vibrationally
excited mode.Comment: 12 pages, 12 figures, to appear in Phys. Rev.
The jamming transition and new percolation universality classes in particulate systems with attraction
We numerically study the jamming transition in particulate systems with
attraction by investigating their mechanical response at zero temperature. We
find three regimes of mechanical behavior separated by two critical
transitions--connectivity and rigidity percolation. The transitions belong to
different universality classes than their lattice counterparts, due to force
balance constraints. We also find that these transitions are unchanged at low
temperatures and resemble gelation transitions in experiments on colloidal and
silica gels.Comment: 4 pages, 2 figures, 2 table
Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift
Recently, Yu, Brown, and Chuang [Phys. Rev. A {\bf 71}, 032341 (2005)]
investigated the entanglement attainable from unitary transformed thermal
states in liquid-state nuclear magnetic resonance (NMR). Their research gave an
insight into the role of the entanglement in a liquid-state NMR quantum
computer. Moreover, they attempted to reveal the role of mixed-state
entanglement in quantum computing. However, they assumed that the Zeeman energy
of each nuclear spin which corresponds to a qubit takes a common value for all;
there is no chemical shift. In this paper, we research a model with the
chemical shifts and analytically derive the physical parameter region where
unitary transformed thermal states are entangled, by the positive partial
transposition (PPT) criterion with respect to any bipartition. We examine the
effect of the chemical shifts on the boundary between the separability and the
nonseparability, and find it is negligible.Comment: 9 pages, 1 figures. There were mistakes in the previous version. The
main results don't change, but our motivation has to be reconsidere
The ortho-to-para ratio of ammonia in the L1157 outflow
We have measured the ortho-to-para ratio of ammonia in the blueshifted gas of
the L1157 outflow by observing the six metastable inversion lines from (J, K) =
(1, 1) to (6, 6). The highly excited (5, 5) and (6, 6) lines were first
detected in the low-mass star forming regions. The rotational temperature
derived from the ratio of four transition lines from (3, 3) to (6, 6) is
130-140 K, suggesting that the blueshifted gas is heated by a factor of ~10 as
compared to the quiescent gas. The ortho-to-para ratio of the NH3 molecules in
the blueshifted gas is estimated to be 1.3--1.7, which is higher than the
statistical equilibrium value. This ratio provides us with evidence that the
NH3 molecules have been evaporated from dust grains with the formation
temperature between 18 and 25 K. It is most likely that the NH3 molecules on
dust grains have been released into the gas phase through the passage of strong
shock waves produced by the outflow. Such a scenario is supported by the fact
that the ammonia abundance in the blueshifted gas is enhanced by a factor of ~5
with respect to the dense quiescent gas.Comment: 16 pages, including 3 PS figures. To appear in the ApJ (Letters).
aastex macro
A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end–directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs
Structure and soft magnetic properties of sputter deposited MnZn-ferrite films
In this paper we report the soft magnetic properties of thin films of sputtered MnZn ferrite deposited on thermally oxidized Si substrates. A high deposition temperature, 600¿°C, together with the addition of water vapor to the sputtering gas was found to improve the initial ac permeability, µ. The highest value obtained was approximately 30. For MnZn-ferrite films with much larger grain sizes, as obtained by deposition on a polycrystalline Zn-ferrite substrate, a µ of 100 was obtained. The results are discussed in terms of the so-called nonmagnetic grain boundary model
Infrared study of spin crossover Fe-picolylamine complex
Infrared (IR) absorption spectroscopy has been used to probe the evolution of
microscopic vibrational states upon the temperature- and photo-induced spin
crossovers in [Fe(2-picolylamine)3]Cl2EtOH (Fe-pic). To overcome the small
sizes and the strong IR absorption of the crystal samples used, an IR
synchrotron radiation source and an IR microscope have been used. The obtained
IR spectra of Fe-pic show large changes between high-spin and low-spin states
for both the temperature- and the photo- induced spin crossovers. Although the
spectra in the temperature- and photo-induced high-spin states are relatively
similar to each other, they show distinct differences below 750 cm-1. This
demonstrates that the photo-induced high-spin state involves microscopically
different characters from those of the temperature-induced high-spin state. The
results are discussed in terms of local pressure and structural deformations
within the picolylamine ligands, and in terms of their possible relevance to
the development of macroscopic photo-induced phase in Fe-pic.Comment: 6 pages (text) and 6 figures,submitted to J. Phys. Soc. Jp
- …