213 research outputs found

    Two Detector Reactor Neutrino Oscillation Experiment Kr2Det at Krasnoyarsk. Status Report

    Full text link
    We consider status of the Kr2Det project aimed at sensitive searches for neutrino oscillations in the atmospheric neutrino mass parameter region around Dm2 ~ 3x10-3 eV2and at obtaining new information on the electron neutrino mass structure (Ue3).Comment: 4 pages in pdf file. Talk presented at NANP-2001 International Conference in Dubna, Russia, June 200

    Present and Future Experiments in Non-equilibrium Reactor Antineutrino Energy Spectrum

    Full text link
    Considerable efforts that have been undertaken in the recent years in low energy antineutrino experiments require further systematic investigations in line of reactor antineutrino spectroscopy as a metrological basis of these experiments. We consider some effects associated with the non-equilibrium of reactor antineutrino radiation and residual antineutrino emission from spent reactor fuel in contemporary antineutrino experiments.Comment: 7 pages, 5 figures; Talk presented at International Conference NANP-2005, Dubna, Russia, Jun.-2005; Submitted to Phys. Atom. Nuc

    The Kr2Det project: Search for mass-3 state contribution |U_{e3}|^2 to the electron neutrino using a one reactor - two detector oscillation experiment at Krasnoyarsk underground site

    Get PDF
    The main physical goal of the project is to search with reactor antineutrinos for small mixing angle oscillations in the atmospheric mass parameter region around {\Delta}m^{2}_{atm} ~ 2.5 10^{-3} eV^2 in order to find the element U_{e3} of the neutrino mixing matrix or to set a new more stringent constraint (U_{e3} is the contribution of mass-3 state to the electron neutrino flavor state). To achieve this we propose a "one reactor - two detector" experiment: two identical antineutrino spectrometers with ∌\sim50 ton liquid scintillator targets located at ~100 m and ~1000 m from the Krasnoyarsk underground reactor (~600 mwe). In no-oscillation case ratio of measured positron spectra of the \bar{{\nu}_e} + p \to e^{+} + n reaction is energy independent. Deviation from a constant value of this ratio is the oscillation signature. In this scheme results do not depend on the exact knowledge of the reactor power, nu_e spectra, burn up effects, target volumes and, which is important, the backgrounds can periodically be measured during reactor OFF periods. In this letter we present the Krasnoyarsk reactor site, give a schematic description of the detectors, calculate the neutrino detection rates and estimate the backgrounds. We also outline the detector monitoring and calibration procedures, which are of a key importance. We hope that systematic uncertainties will not accede 0.5% and the sensitivity U^{2}_{e3} ~4 10^{-3} (at {\Delta}m^{2} = 2.5 10^{-3} eV^2) can be achieved.Comment: Latex 2e, 9 pages and 5 ps figure

    Neutrino Geophysics at Baksan I: Possible Detection of Georeactor Antineutrinos

    Full text link
    J.M. Herndon in 90-s proposed a natural nuclear fission georeactor at the center of the Earth with a power output of 3-10 TW as an energy source to sustain the Earth magnetic field. R.S. Raghavan in 2002 y. pointed out that under certain condition antineutrinos generated in georeactor can be detected using massive scintillation detectors. We consider the underground Baksan Neutrino Observatory (4800 m.w.e.) as a possible site for developments in Geoneutrino physics. Here the intrinsic background level of less than one event/year in a liquid scintillation ~1000 target ton detector can be achieved and the main source of background is the antineutrino flux from power reactors. We find that this flux is ~10 times lower than at KamLAND detector site and two times lower than at Gran Sasso laboratory and thus at Baksan the georeactor hypothesis can be conclusively tested. We also discuss possible search for composition of georector burning nuclear fuel by analysis of the antineutrino energy spectrum.Comment: 7 pages in LaTeX, 3 PS figures, Submitted to Physics of Atomic Nucle

    INDUSTRIAL HERITAGE AND LANDSCAPE: THE ROLE OF WATER IN THE ARCHITECTURAL REACTIVATION DESIGN FOR THE BURGO PAPER MILL IN MANTUA

    Get PDF
    The paper is part of a research project, carried out within the Polytechnic University of Milan about the Burgo Paper Mill, an industrial settlement involved in the production of paper near the UNESCO World Heritage site of Mantua, on the banks of the Lago di Mezzo lake. The area represents an exceptional case study related to the topics of industrial reconversion, landscape, environmental design, and the valorization of cultural and natural heritage. The recent change in the site ownership fostered a new life cycle, which represents the occasion for the enhancement of its architectural and landscape heritage. The research project focused on a new system of relations between architectural artefacts and open spaces, with a particular consideration about socioeconomic and cultural themes, as well as the role that water can play in the future development of the site. Water plays a key role in the definition of cultural and natural elements in this research project, revealing new possibilities for revitalization of the industrial settlement as well as the whole territorial framework. Between theoretical thought and design experimentation, pursuing to tackle the problem in its whole complexity, the authors understood the necessity of a multi-scalar approach structured within a time-based strategy

    Reactor as a Source of Antineutrinos: Thermal Fission Energy

    Full text link
    Deeper insight into the features of a reactor as a source of antineutrinos is required for making further advances in studying the fundamental properties of the neutrino. The relationship between the thermal power of a reactor and the rate of the chain fission reaction in its core is analyzed.Comment: 15 pages in LaTex and 4 ps figure

    Inverse beta decay reaction in 232^{232}Th and 233^{233}U fission antineutrino flux

    Full text link
    Energy spectra of antineutrinos coming from 232^{232}Th and 233^{233}U neutron-induced fission are calculated, relevant inverse beta decay Îœeˉ+p→n+e+\bar{{\nu}_e}+p \to n + e^{+} positron spectra and total cross sections are found. This study is stimulated by a hypothesis that a self-sustained nuclear chain reaction is burning at the center of the Earth ("Georeactor"). The Georeactor, according to the author of this idea, provides energy necessary to sustain the Earth's magnetic field. The Georeactor's nuclear fuel is 235^{235}U and, probably, 232^{232}Th and 233^{233}U. Results of present study may appear to be useful in future experiments aimed to test the Georector hypothesis and to estimate its fuel components as a part of developments in geophysics and astrophysics based on observations of low energy antineutrinos in Nature.Comment: 6 pages in LaTeX and 2 ps figures. Submitted to Physics of Atomic Nucle

    Weak and Magnetic Inelastic Scattering of Antineutrinos on Atomic Electrons

    Get PDF
    Neutrino scattering on electrons is considered as a tool for laboratory searches of the neutrino magnetic moment. We study inelastic Μˉee−\bar\nu_ee^--scattering on electrons bound in the germanium (Z=32) and iodine (Z=53) atoms for antineutrinos generated in a nuclear reactor core and also in the 90^{90}Sr-90^{90}Y and 147^{147}Pm artificial sources. Using the relativistic Hartree-Fock-Dirac model, we calculate both the magnetic and weak scattering cross sections for the recoil electron energy range of 1 to 100 keV where a higher sensitivity to the neutrino magnetic moment could be achieved. Particular attention is paid to the approximate procedure which allows us to take into account the effects of atomic binding on the inelastic scattering spectra in a simple way.Comment: 7 pages in LaTeX, 10 figures in P

    Components of Antineutrino Emission in Nuclear Reactor

    Full text link
    New Μˉe,e{\bar{\nu}_e},e scattering experiments aimed for sensitive searches of the Îœe{\nu}_e magnetic moment and projects to explore small mixing angle oscillations at reactors call for a better understanding of the reactor antineutrino spectrum. Here we consider six components, which contribute to the total Μˉe{\bar{\nu}_e} spectrum generated in nuclear reactor. They are: beta decay of the fission fragments of 235^{235}U, 239^{239}Pu, 238^{238}U and 241^{241}Pu, decay of beta-emitters produced as a result of neutron capture in 238^{238}U and also due to neutron capture in accumulated fission fragments which perturbs the spectrum. For antineutrino energies less than 3.5 MeV we tabulate evolution of Μˉe{\bar{\nu}_e} spectra corresponding to each of the four fissile isotopes vs fuel irradiation time and their decay after the irradiation is stopped and also estimate relevant uncertainties. Small corrections to the ILL spectra are considered.Comment: LaTex 8 pages, 2 ps figure

    Reactor Neutrino Experiments Compared to Superbeams

    Full text link
    We present a detailed quantitative discussion of the measurement of the leptonic mixing angle sin⁡22ξ13\sin^2 2 \theta_{13} with a future reactor neutrino oscillation experiment consisting of a near and far detector. We perform a thorough analysis of the impact of various systematical errors and compare the resulting physics potential to the one of planned first-generation superbeam experiments. Furthermore, we investigate the complementarity of both types of experiments. We find that, under realistic assumptions, a determination of sin⁡22ξ13\sin^2 2 \theta_{13} down to 10−210^{-2} is possible with reactor experiments. They are thus highly competitive to first-generation superbeams and may be able to test sin⁡22ξ13\sin^2 2 \theta_{13} on shorter timescales. In addition, we find that the combination of a KamLAND-size reactor experiment with one or two superbeams could substantially improve the ability to access the neutrino mass hierarchy or the leptonic CP phase.Comment: Typo in Eq. (9) corrected. 36 pages, 12 figure
    • 

    corecore