17 research outputs found

    Retrieval process differences episode recall tasks influence mood congruent memory

    No full text

    Quantitative Protein Expression in the Human Retinal Pigment Epithelium : Comparison Between Apical and Basolateral Plasma Membranes With Emphasis on Transporters

    Get PDF
    PURPOSE. Retinal pigment epithelium (RPE) limits the xenobiotic entry from the systemic blood stream to the eye. RPE surface transporters can be important in ocular drug distribution, but it has been unclear whether they are expressed on the apical, basal, or both cellular surfaces. In this paper, we provide quantitative comparison of apical and basolateral RPE surface proteomes. METHODS. We separated the apical and basolateral membranes of differentiated human fetal RPE (hfRPE) cells by combining apical membrane peeling and sucrose density gradient centrifugation. The membrane fractions were analyzed with quantitative targeted absolute proteomics (QTAP) and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to reveal the membrane protein localization on the RPE cell surfaces. We quantitated 15 transporters in unfractionated RPE cells and scaled their expression to tissue level. RESULTS. Several proteins involved in visual cycle, cell adhesion, and ion and nutrient transport were expressed on the hfRPE plasma membranes. Most drug transporters showed similar abundance on both RPE surfaces, whereas large neutral amino acids transporter 1 (LAT1), p-glycoprotein (P-gp), and monocarboxylate transporter 1 (MCT1) showed modest apical enrichment. Many solute carriers (SLC) that are potential prodrug targets were present on both cellular surfaces, whereas putative sodium-coupled neutral amino acid transporter 7 (SNAT7) and riboflavin transporter (RFT3) were enriched on the basolateral and sodium- and chloride-dependent neutral and basic amino acid transporter (ATB(0+)) on the apical membrane. CONCLUSIONS. Comprehensive quantitative information of the RPE surface proteomes was reported for the first time. The scientific community can use the data to further increase understanding of the RPE functions. In addition, we provide insights for transporter protein localization in the human RPE and the significance for ocular pharmacokinetics.Peer reviewe

    Selective drug delivery to the retinal cells : Biological barriers and avenues

    No full text
    Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, re-ceptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.Peer reviewe

    Induction of macrophage scavenger receptor MARCO in nonalcoholic steatohepatitis indicates possible involvement of endotoxin in its pathogenic process

    No full text
    Nonalcoholic steatohepatitis (NASH) is one of the life-threatening hepatic diseases; however, its pathogenesis is still unknown. To evaluate the causative role of hyperlipidaemia and high-fat diet, we compared C57BL/6 mice with inherited hyperlipidaemic model mice (LDLR-/- mice and ApoE -/- mice) fed a normal or a high-fat diet. LDLR-/- and ApoE-/- mice fed the normal diet showed significantly higher serum cholesterol level than that of C57BL/6 mice fed the high-fat diet. These mice, however, have shown neither significant elevation of serum alanine transaminase (ALT) level nor histopathologic features of steatohepatitis. High-fat diet groups of all three strains showed histopathological characteristics of steatohepatitis with elevated serum ALT levels and high expression of macrophage scavenger receptor MARCO mRNA in the liver. Semi-quantitative endotoxin analysis showed an elevated serum endotoxin level in the portal vein but not in the vena cava in ApoE-/- mice fed the high-fat diet. These results indicate that long-term feeding of a high-fat diet induces NASH, whereas hyperlipidaemia alone is not enough to induce NASH. Liver-restricted induction of MARCO in mice with high-fat diet and portal endotoxaemia in ApoE -/- mice fed the high-fat diet suggest the possible involvement of endotoxin in the pathogenesis of NASH

    Disulfiram treatment suppresses antibody-producing reactions by inhibiting macrophage activation and B cell pyrimidine metabolism

    No full text
    Abstract Antibody responses, involving B cells, CD4 + T cells, and macrophages, are implicated in autoimmune diseases and organ transplant rejection. We have previously shown that inhibiting FROUNT with disulfiram (DSF) suppresses macrophage activation and migration, effectively treating inflammatory diseases. In this study, we investigated the effectiveness of DSF in antibody-producing reactions. Using a heart transplantation mouse model with antibody-mediated rejection, we administered anti-CD8 antibody to exclude cellular rejection. DSF directly inhibited B cell responses in vitro and significantly reduced plasma donor-specific antibodies and graft antibody deposition in vivo, resulting in prolonged survival of the heart graft. DSF also mediated various effects, including decreased macrophage infiltration and increased Foxp3+ regulatory T-cells in the grafts. Additionally, DSF inhibited pyrimidine metabolism-related gene expression induced by B-cell stimulation. These findings demonstrate that DSF modulates antibody production in the immune response complexity by regulating B-cell and macrophage responses
    corecore