8 research outputs found

    Estrogens and progestogens in triple negative breast cancer: Do they harm?

    Get PDF
    Triple-negative breast cancers (TNBC) occur more frequently in younger women and do not express estrogen receptor (ER) nor progesterone receptor (PR), and are therefore often consid-ered hormone-insensitive. Treatment of premenopausal TNBC patients almost always includes chemotherapy, which may lead to premature ovarian insufficiency (POI) and can severely impact quality of life. Hormone replacement therapy (HRT) is contraindicated for patients with a history of hormone-sensitive breast cancer, but the data on safety for TNBC patients is inconclusive, with a few randomized trials showing increased risk-ratios with wide confidence intervals for recurrence after HRT. Here, we review the literature on alternative pathways from the classical ER/PR. We find that for both estrogens and progestogens, potential alternatives exist for exerting their effects on TNBC, ranging from receptor conversion, to alternative receptors capable of binding estrogens, as well as paracrine pathways, such as RANK/RANKL, which can cause progestogens to indirectly stimulate growth and metastasis of TNBC. Finally, HRT may also influence other hormones, such as androgens, and their effects on TNBCs expressing androgen receptors (AR). Concluding, the assumption that TNBC is completely hormone-insensitive is incorrect. However, the direction of the effects of the alternative pathways is not always clear, and will need to be investigated further

    Impact of Curcumin (with or without Piperine) on the Pharmacokinetics of Tamoxifen

    Get PDF
    Tamoxifen is a prodrug that is primarily metabolized into the pharmacologically active metabolite endoxifen and eventually into inactive metabolites. The herb curcumin may increase endoxifen exposure by affecting phase II metabolism. We compared endoxifen and tamoxifen exposure in breast cancer patients with or without curcumin, and with addition of the bio-enhancer piperine. Tamoxifen (20–30mg per day (q.d.)) was either given alone, or combined with curcumin (1200 mg three times daily (t.i.d.)) +/− piperine (10 mg t.i.d.). The primary endpoint of this study was the difference in geometric means for the area under the curve (AUC) of endoxifen. Genotyping was performed to determine CYP2D6 and CYP3A4 phenotypes. The endoxifen AUC0–24h decreased with 7.7% (95%CI: −15.4 to 0.7%; p = 0.07) with curcumin and 12.4% (95%CI: −21.9 to −1.9%; p = 0.02) with curcumin and piperine, compared to tamoxifen alone. Tamoxifen AUC0–24h showed similar results. For patients with an extensive CYP2D6 metabolism phenotype (EM), effects were more pronounced than for intermediate CYP2D6 metabolizers (IMs). In conclusion, the exposure to tamoxifen and endoxifen was significantly decreased by concomitant use of curcumin (+/− piperine). Therefore, co-treatment with curcumin could lower endoxifen concentrations below the threshold for efficacy (potentially 20–40% of the patients), especially in EM patients

    Influence of probenecid on endoxifen systemic exposure in breast cancer patients on adjuvant tamoxifen treatment

    Get PDF
    Introduction: In breast cancer patients treated with the anti-estrogen tamoxifen, low concentrations of the active metabolite endoxifen are associated with more disease recurrence. We hypothesized that we could increase endoxifen concentrations by induction of its formation and inhibition of its metabolism by co-administration of probenecid. Methods: We conducted a crossover study and measured endoxifen concentrations in patients on steady-state tamoxifen monotherapy and after 14 days of combination treatment with probenecid. Eleven evaluable patients were included. Results: Treatment with tamoxifen and probenecid resulted in a 26% increase of endoxifen area under the plasma concentration–time curve from 0 to 24 h (AUC0–24h) compared to tamoxifen monotherapy (95% confidence interval [CI]: 8–46%; p < 0.01), while the maximum observed endoxifen concentration increased with 24% (95% CI: 7–44%; p < 0.01). The metabolic ratio of endoxifen to tamoxifen increased with 110% (95% CI: 82–143%; p < 0.001) after the addition of probenecid. Conclusion: Probenecid resulted in a clinically relevant increase of endoxifen concentrations in breast cancer patients treated with adjuvant tamoxifen. This combination therapy could provide a solution for patients with a CYP2D6-poor metabolizer phenotype or endoxifen concentrations below the threshold despite earlier tamoxifen dose

    Therapeutic Drug Monitoring of Endoxifen for Tamoxifen Precision Dosing: Feasible in Patients with Hormone-Sensitive Breast Cancer

    Get PDF
    Background: Endoxifen is the most important active metabolite of tamoxifen. Several retrospective studies have suggested a minimal or threshold endoxifen systemic concentration of 14–16 nM is required for a lower recurrence rate. The aim of this study was to investigate the feasibility of reaching a predefined endoxifen level of ≥ 16 nM (5.97 ng/mL) over time using therapeutic drug monitoring (TDM). Methods: This prospective open-label intervention study enrolled patients who started treatment with a standard dose of tamoxifen 20 mg once daily for early breast cancer. An outpatient visit was combined with a TDM sample at 3, 4.5, and 6 months after initiation of the tamoxifen treatment. The tamoxifen dose was escalated to a maximum of 40 mg if patients had an endoxifen concentration < 16 nM. The primary endpoint of the study was the percentage of patients with an endoxifen level ≥ 16 nM at 6 months after the start of therapy compared with historical data, in other words, 80% of patients with endoxifen levels ≥ 16 nM with standard therapy. Results: In total, 145 patients were included. After 6 months, 89% of the patients had endoxifen levels ≥ 16 nM, compared with a literature-based 80% of patients with endoxifen levels ≥ 16 nM at baseline (95% confidence interval 82–94; P = 0.007). In patients with an affected CYP2D6 allele, it was not always feasible to reach the predefined endoxifen level of ≥ 16 nM. No increase in tamoxifen-related adverse events was reported after dose escalation. Conclusion: This study demonstrated that it is feasible to increase the percentage of patients with endoxifen levels ≥ 16 nM using TDM. TDM is a safe strategy that offers the possibility of nearly halving the number of patients with endoxifen levels < 16 nM
    corecore