102 research outputs found
Direct observation of localization in the minority-spin-band electrons of magnetite below the Verwey temperature
Two-dimensional spin-uncompensated momentum density distributions, s, were reconstructed in magnetite at 12K and 300K from
several measured directional magnetic Compton profiles. Mechanical de-twinning
was used to overcome severe twinning in the single crystal sample below the
Verwey transition. The reconstructed in the first
Brillouin zone changes from being negative at 300 K to positive at 12 K. This
result provides the first clear evidence that electrons with low momenta in the
minority spin bands in magnetite are localized below the Verwey transition
temperature.Comment: 13 pages, 4 figures, accepted in Physical Review
A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al
We report high-resolution Compton profiles (CP's) of Al along the three
principal symmetry directions at a photon energy of 59.38 keV, together with
corresponding highly accurate theoretical profiles obtained within the
local-density approximation (LDA) based band-theory framework. A good accord
between theory and experiment is found with respect to the overall shapes of
the CP's, their first and second derivatives, as well as the anisotropies in
the CP's defined as differences between pairs of various CP's. There are
however discrepancies in that, in comparison to the LDA predictions, the
measured profiles are lower at low momenta, show a Fermi cutoff which is
broader, and display a tail which is higher at momenta above the Fermi
momentum. A number of simple model calculations are carried out in order to
gain insight into the nature of the underlying 3D momentum density in Al, and
the role of the Fermi surface in inducing fine structure in the CP's. The
present results when compared with those on Li show clearly that the size of
discrepancies between theoretical and experimental CP's is markedly smaller in
Al than in Li. This indicates that, with increasing electron density, the
conventional picture of the electron gas becomes more representative of the
momentum density and that shortcomings of the LDA framework in describing the
electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl
Bulk Fermi surface and momentum density in heavily doped LaSrCuO using high resolution Compton scattering and positron annihilation spectroscopies
We have observed the bulk Fermi surface (FS) in an overdoped (=0.3) single
crystal of LaSrCuO by using Compton scattering. A
two-dimensional (2D) momentum density reconstruction from measured Compton
profiles yields a clear FS signature in the third Brillouin zone along [100].
The quantitative agreement between density functional theory (DFT) calculations
and momentum density experiment suggests that Fermi-liquid physics is restored
in the overdoped regime. In particular the predicted FS topology is found to be
in good accord with the corresponding experimental data. We find similar
quantitative agreement between the measured 2D angular correlation of positron
annihilation radiation (2D-ACAR) spectra and the DFT based computations.
However, 2D-ACAR does not give such a clear signature of the FS in the extended
momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure
A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy
We present a novel technique for enhancing Fermi surface (FS) signatures in
the 2D distribution obtained after the 3D momentum density in a crystal is
projected along a specific direction in momentum space. These results are
useful for investigating fermiology via high resolution Compton scattering and
positron annihilation spectroscopies. We focus on the particular case of the
(110) projection in an fcc crystal where the standard approach based on the use
of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due
to the strong overlap with FS images obtained through projection from higher
Brillouin zones. We show how these superposed FS images can be disentangled by
using a selected set of reciprocal lattice vectors in the folding process. The
applicability of our partial folding scheme is illustrated by considering
Compton spectra from an Al-3at%Li disordered alloy single crystal. For this
purpose, high resolution Compton profiles along nine directions in the (110)
plane were measured. Corresponding highly accurate theoretical profiles in
Al-3at%Li were computed within the local density approximation (LDA)-based
Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
first-principles framework. A good level of overall accord between theory and
experiment is obtained, some expected discrepancies reflecting electron
correlation effects notwithstanding, and the partial folding scheme is shown to
yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.
High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor
We have carried out first principles all-electron calculations of the
(001)-projected 2D electron momentum density and the directional Compton
profiles along the [100], [001] and [110] directions in the Fe-based
superconductor LaOFeAs within the framework of the local density approximation.
We identify Fermi surface features in the 2D electron momentum density and the
directional Compton profiles, and discuss issues related to the observation of
these features via Compton scattering experiments.Comment: 4 pages, 3 figure
Electronic coupling of colloidal CdSe nanocrystals monitored by thin-film positron-electron momentum density methods
The effect of temperature controlled annealing on the confined valence
electron states in CdSe nanocrystal arrays, deposited as thin films, was
studied using two-dimensional angular correlation of annihilation radiation
(2D-ACAR). A reduction in the intensity by ~35% was observed in a feature of
the positron annihilation spectrum upon removal of the pyridine capping
molecules above 200 degrees Celsius in a vacuum. This reduction is explained by
an increased electronic interaction of the valence orbitals of neighboring
nanocrystals, induced by the formation of inorganic interfaces. Partial
evaporation of the nanoporous CdSe layer and additional sintering into a
polycrystalline thin film was observed at a relatively low temperature of ~486
degrees Celsius.Comment: The article has been accepted by Applied Physics Letters. After it is
published, it will be found at http://apl.aip.or
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
A value-based healthcare approach: Health-related quality of life and psychosocial functioning in women with Turner syndrome
Objective: As part of the value-based healthcare programme in our hospital, a set of patient-reported outcome measures was developed together with patients and implemented in the dedicated Turner Syndrome (TS) outpatient clinic. This study aims to investigate different aspects of health-related quality of life (HR-QoL) and psychosocial functioning in women with TS in order to establish new possible targets for therapy. Design/Participants: A comprehensive set of questionnaires (EQ-5D, PSS-10, CIS-20, Ferti-QoL, FSFI) was developed and used to capture different aspects of HR-QoL and psychosocial functioning in a large cohort of adult women with Turner syndrome. All consecutive women, ≥18 years, who visited the outpatient clinic of our tertiary centre were eligible for inclusion. Results: Of the eligible 201 women who were invited to participate, 177 women (age 34 ± 12 years, mean ± SD) completed at least one of the validated questionnaires (88%). Women with TS reported a lower health-related quality of life (EQ-5D: 0.857 vs 0.892, P =.003), perceived more stress (PSS-10:14.7 vs 13.3; P =.012) and experienced increased fatigue (CIS-20: P <.001) compared to the general Dutch population. A relationship between noncardiac comorbidities (eg diabetes, orthopaedic complaints) and HR-QoL was found (R =.508). Conclusions: We showed that TS women suffer from impaired HR-QoL, more perceived stress and increased fatigue compared to healthy controls. A relationship between noncardiac comorbidities and HR-QoL was found. Especially perceived stress and increased fatigue can be considered targets for improvement of HR-QoL in TS women
Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys
Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and
Applications" to be published in the series Springer Lecture Notes on Physics,
P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical
work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals
and Applications" to be published in the series Springer Lecture Notes on
Physics, P. H. Dederichs and I. Galanakis (eds
- …