102 research outputs found

    Direct observation of localization in the minority-spin-band electrons of magnetite below the Verwey temperature

    Full text link
    Two-dimensional spin-uncompensated momentum density distributions, ρs2D(p)\rho_{\rm s}^{2D}({\bf p})s, were reconstructed in magnetite at 12K and 300K from several measured directional magnetic Compton profiles. Mechanical de-twinning was used to overcome severe twinning in the single crystal sample below the Verwey transition. The reconstructed ρs2D(p)\rho_{\rm s}^{2D}({\bf p}) in the first Brillouin zone changes from being negative at 300 K to positive at 12 K. This result provides the first clear evidence that electrons with low momenta in the minority spin bands in magnetite are localized below the Verwey transition temperature.Comment: 13 pages, 4 figures, accepted in Physical Review

    A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al

    Full text link
    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's, their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are however discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff which is broader, and display a tail which is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al, and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl

    Bulk Fermi surface and momentum density in heavily doped La2x_{2-x}Srx_xCuO4_4 using high resolution Compton scattering and positron annihilation spectroscopies

    Get PDF
    We have observed the bulk Fermi surface (FS) in an overdoped (xx=0.3) single crystal of La2x_{2-x}Srx_xCuO4_4 by using Compton scattering. A two-dimensional (2D) momentum density reconstruction from measured Compton profiles yields a clear FS signature in the third Brillouin zone along [100]. The quantitative agreement between density functional theory (DFT) calculations and momentum density experiment suggests that Fermi-liquid physics is restored in the overdoped regime. In particular the predicted FS topology is found to be in good accord with the corresponding experimental data. We find similar quantitative agreement between the measured 2D angular correlation of positron annihilation radiation (2D-ACAR) spectra and the DFT based computations. However, 2D-ACAR does not give such a clear signature of the FS in the extended momentum space in either the theory or the experiment.Comment: 9 pages, 8 figure

    A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy

    Full text link
    We present a novel technique for enhancing Fermi surface (FS) signatures in the 2D distribution obtained after the 3D momentum density in a crystal is projected along a specific direction in momentum space. These results are useful for investigating fermiology via high resolution Compton scattering and positron annihilation spectroscopies. We focus on the particular case of the (110) projection in an fcc crystal where the standard approach based on the use of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due to the strong overlap with FS images obtained through projection from higher Brillouin zones. We show how these superposed FS images can be disentangled by using a selected set of reciprocal lattice vectors in the folding process. The applicability of our partial folding scheme is illustrated by considering Compton spectra from an Al-3at%Li disordered alloy single crystal. For this purpose, high resolution Compton profiles along nine directions in the (110) plane were measured. Corresponding highly accurate theoretical profiles in Al-3at%Li were computed within the local density approximation (LDA)-based Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) first-principles framework. A good level of overall accord between theory and experiment is obtained, some expected discrepancies reflecting electron correlation effects notwithstanding, and the partial folding scheme is shown to yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.

    High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor LaO1xFxFeAsLaO_{1-x}F_xFeAs

    Full text link
    We have carried out first principles all-electron calculations of the (001)-projected 2D electron momentum density and the directional Compton profiles along the [100], [001] and [110] directions in the Fe-based superconductor LaOFeAs within the framework of the local density approximation. We identify Fermi surface features in the 2D electron momentum density and the directional Compton profiles, and discuss issues related to the observation of these features via Compton scattering experiments.Comment: 4 pages, 3 figure

    Electronic coupling of colloidal CdSe nanocrystals monitored by thin-film positron-electron momentum density methods

    Full text link
    The effect of temperature controlled annealing on the confined valence electron states in CdSe nanocrystal arrays, deposited as thin films, was studied using two-dimensional angular correlation of annihilation radiation (2D-ACAR). A reduction in the intensity by ~35% was observed in a feature of the positron annihilation spectrum upon removal of the pyridine capping molecules above 200 degrees Celsius in a vacuum. This reduction is explained by an increased electronic interaction of the valence orbitals of neighboring nanocrystals, induced by the formation of inorganic interfaces. Partial evaporation of the nanoporous CdSe layer and additional sintering into a polycrystalline thin film was observed at a relatively low temperature of ~486 degrees Celsius.Comment: The article has been accepted by Applied Physics Letters. After it is published, it will be found at http://apl.aip.or

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    A value-based healthcare approach: Health-related quality of life and psychosocial functioning in women with Turner syndrome

    Get PDF
    Objective: As part of the value-based healthcare programme in our hospital, a set of patient-reported outcome measures was developed together with patients and implemented in the dedicated Turner Syndrome (TS) outpatient clinic. This study aims to investigate different aspects of health-related quality of life (HR-QoL) and psychosocial functioning in women with TS in order to establish new possible targets for therapy. Design/Participants: A comprehensive set of questionnaires (EQ-5D, PSS-10, CIS-20, Ferti-QoL, FSFI) was developed and used to capture different aspects of HR-QoL and psychosocial functioning in a large cohort of adult women with Turner syndrome. All consecutive women, ≥18 years, who visited the outpatient clinic of our tertiary centre were eligible for inclusion. Results: Of the eligible 201 women who were invited to participate, 177 women (age 34 ± 12 years, mean ± SD) completed at least one of the validated questionnaires (88%). Women with TS reported a lower health-related quality of life (EQ-5D: 0.857 vs 0.892, P =.003), perceived more stress (PSS-10:14.7 vs 13.3; P =.012) and experienced increased fatigue (CIS-20: P <.001) compared to the general Dutch population. A relationship between noncardiac comorbidities (eg diabetes, orthopaedic complaints) and HR-QoL was found (R =.508). Conclusions: We showed that TS women suffer from impaired HR-QoL, more perceived stress and increased fatigue compared to healthy controls. A relationship between noncardiac comorbidities and HR-QoL was found. Especially perceived stress and increased fatigue can be considered targets for improvement of HR-QoL in TS women

    Half-metallicity and Slater-Pauling behavior in the ferromagnetic Heusler alloys

    Full text link
    Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds). It contains a review of the theoretical work on the half-metallic Heusler alloys.Comment: Introductory chapter for the book "Halfmetallic Alloys - Fundamentals and Applications" to be published in the series Springer Lecture Notes on Physics, P. H. Dederichs and I. Galanakis (eds
    corecore