474 research outputs found

    Fermi liquid identities for the Infinite U Anderson Model

    Full text link
    We show how the electron gas methods of Luttinger, Ward and Nozi\`eres can be applied to the infinite U Anderson impurity model within a Schwinger boson treatment. Working to all orders in a 1/N expansion, we show how the Friedel Langreth relationship, the Yamada-Yosida-Yoshimori and the Shiba-Korringa relations can be derived, under the assumption that the spinon and holon fields are gapped. One of the remarkable features of this treatment, is that the Landau amplitudes depend on the exchange of low energy virtual spinons and holons. We end the paper with a discussion on the extension of our approach to the lattice, where the spinon-holon is expected to close at a quantum critical point.Comment: 18 pages. Version 2 revised after referees comment

    Large scale Optimal Transportation Meshfree (OTM) Simulations of Hypervelocity Impact

    Get PDF
    Large scale three-dimensional numerical simulations of hypervelocity impact of Aluminum alloy 6061-T6 plates by Nylon 6/6 cylindrical projectile have been performed using the Optimal Transportation Meshfree (OTM) method of Li et al. [7] along with the seizing contact and variational material point failure algorithm [17, 18]. The dynamic response of the Al6061-T6 plate including phase transition in the high strain rate, high pressure and high temperature regime expected in our numerical analysis is described by the use of a variational thermomechanical coupling constitutive model with SESAME equation of state, rate-dependent J2 plasticity with power law hardening and thermal softening and temperature dependent Newtonian viscosity. A polytropic type of equation of state fit to in-house ReaxFF calculations is employed to model the Nylon 6/6 projectile under extreme conditions. The evaluation of the performance of the numerical model takes the form of a conventional validation analysis. In support of the analysis, we have conducted experiments over a range of plate thicknesses of [0.5, 3.0] mm, a range of impact velocities of [5.0, 7.0]km/s and a range of obliquities of [0, 70]° at Caltech's Small Particle Hypervelocity Range (SPHIR) Facility. Large scale three-dimensional OTM simulations of hypervelocity impact are performed on departmental class systems using a dynamic load balancing MPI/PThreads parallel implementation of the OTM method. We find excellent full field agreement between measured and computed perforation areas, debris cloud and temperature field

    Pressure-Dependent, Infrared-Emitting Phenomenon in Hypervelocity Impact

    Get PDF
    A series of hypervelocity impact experiments were conducted with variable target chamber atmospheric pressure ranging from 0.9 to 21.5 Torr. Using a two-stage light-gas gun, 5.7 mg nylon 6/6 right-cylinders were accelerated to speeds ranging between 6.0 and 6.3 km/s to impact 1.5 mm thick 6061-T6 aluminum plates. Full-field images of near-IR emission (0.9 to 1.7 μm) were measured using a high-speed spectrograph system with image exposure times of 1 μs. The radial expansion of an IR-emitting impact-generated phenomenon was observed to be dependent upon the ambient target chamber atmospheric pressures. Higher chamber pressures demonstrated lower radial expansions of the subsequently measured IR-emitting region uprange of the target. Dimensional analysis, originally presented by Taylor to describe the expansion of a hemispherical blast wave, is applied to describe the observed pressure-dependence of the IR-emitting cloud expansion. Experimental results are used to empirically determine two dimensionless constants for the analysis. The maximum radial expansion of the observed IR-emitting cloud is described by the Taylor blast-wave theory, with experimental results demonstrating the characteristic nonlinear dependence on atmospheric pressure. Furthermore, the edges of the measured IR-emitting clouds are observed to expand at extreme speeds ranging from approximately 13 to 39 km/s. In each experiment, impact ejecta and debris are simultaneously observed in the visible range using an ultrahigh-speed laser shadowgraph system. For the considered experiments, ejecta and debris speeds are measured between 0.6 and 5.1 km/s. Such a disparity in observed phenomena velocities suggests the IR-emitting cloud is a distinctly different phenomenon to both the uprange ejecta and downrange debris generated during a hypervelocity impact

    Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    Get PDF
    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10 ls after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the data to down-range emission spectra also revealed differences in the relative intensities of the atomic/molecular composition of the observed vapor clouds

    Hall effect in quasi one-dimensional organic conductors

    Full text link
    We study the Hall effect in a system of weakly coupled Luttinger Liquid chains, using a Memory function approach to compute the Hall constant in the presence of umklapp scattering along the chains. In this approximation, the Hall constant decomposes into two terms: a high-frequency term and a Memory function term. For the case of zero umklapp scattering, where the Memory function vanishes, the Hall constant is simply the band value, in agreement with former results in a similar model with no dissipation along the chains. With umklapp scattering along the chains, we find a power-law temperature dependance of the Hall constant. We discuss the applications to quasi 1D organic conductors at high temperatures.Comment: Proceedings of the ISCOM conference "Sixth International Symposium on Crystalline Organic Metals, Superconductors, and Ferromagnets", Key West, Florida, USA (Sept. 2005), to be plublished in the Journal of Low Temperature Physic

    Examining the temporal evolution of hypervelocity impact phenomena via high-speed imaging and ultraviolet-visible emission spectroscopy

    Get PDF
    The temporal evolution of a previously observed hypervelocity impact-induced vapor cloud [Mihaly et al., Int. J. Impact Eng. 62, 13 (2013)] was measured by simultaneously recording several full-field, near-IR images of the resulting emission using an OMA-V high-speed camera. A two-stage light-gas gun was used to accelerate 5 mg Nylon 6/6 right-cylinders to speeds between 5 km/s and 7 km/s to impact 1.5 mm thick 6061-T6 aluminum target plates. Complementary laser-side-lighting [Mihaly et al ., Int. J. Impact Eng. 62, 13 (2013); Proc. Eng. 58, 363 (2013)] and front-of-target (without laser illumination) images were also captured using a Cordin ultra-high-speed camera. The rapid expansion of the vapor cloud was observed to contain a bright, emitting exterior, and a darker, optically thick interior. The shape of this phenomenon was also observed to vary considerably between experiments due to extremely high-rate (>250 000 rpm) of tumbling of the cylindrical projectiles. Additionally, UV-vis emission spectra were simultaneously recorded to investigate the temporal evolution of the atomic and molecular composition of the up-range, impact-induced vapor plume. A PI-MAX3 high-speed camera coupled to an Acton spectrograph was utilized to capture the UV-vis spectra, which shows an overall peak in emission intensity between approximately 6–10 μs after impact trigger, corresponding to an increased quantity of emitting vapor/plasma passing through the spectrometer slit during this time period. The relative intensity of the numerous spectral bands was also observed to vary according to the exposure delay of the camera, indicating that the different atomic/molecular species exhibit a varied temporal evolution during the vapor cloud expansion. Higher resolution spectra yielded additional emission lines/bands that provide further evidence of interaction between fragmented projectile material and the 1 mmHg atmosphere inside the target chamber. A comparison of the data to down-range emission spectra also revealed differences in the relative intensities of the atomic/molecular composition of the observed vapor clouds

    Vanishing Hall Constant in the Stripe Phase of Cuprates

    Full text link
    The Hall constant R_H is considered for the stripe structures. In order to explain the vanishing of R_H in LNSCO at x = 1/8, we use the relation of R_H to the Drude weight D as well as direct numerical calculation, to obtain results within the t-J model, where the stripes are imposed via a charge potential and a staggered magnetic field. The origin of R_H ~ 0 is related to a maximum in D and the minimal kinetic energy in stripes with a hole filling ~ 1/2. The same argument indicates on a possibility of R_H ~ 0 in the whole range of static stripes for x < 1/8.Comment: RevTeX, 4 pages, 5 figure
    • …
    corecore