34 research outputs found

    The functional ecology of fish predation on coral reefs

    Get PDF
    Michalis Mihalitsis studied fish predation on coral reefs. Fish predators feed in fundamentally different ways. The main predators on reefs are completely different from the ones previously considered, suggesting the need for a paradigm shift in this field. His results have significant implications for how we understand reef function

    Functional implications of dentition-based morphotypes in piscivorous fishes

    Get PDF
    Teeth are crucial in elucidating the life history of vertebrates. However, most studies of teeth have focused on mammals. In heterodont mammals, tooth function is based on tooth shape and position along the jaw. However, the vast majority of vertebrates are homodont, and tooth function might not be based on the same principles (in homodonts, tooth shape is broadly similar along the jaw). We provide a quantitative framework and establish dentition-based morphotypes for piscivorous fishes. We then assess how these morphotypes relate to key functional feeding traits. We identified three broad morphotypes: edentulate, villiform and macrodont, with edentulate and villiform species displaying considerable functional overlap; macrodont species are more distinct. When analysing macrodonts exclusively, we found a major axis of variation between 'front-fanged' and 'back-fanged' species. The functional interpretations of this axis suggest that tooth-based functional decoupling could exist, even in homodont vertebrates, where teeth have similar shapes. This diversity is based not only on tooth shape but also solely on the position along the jaw

    Functional groups in piscivorous fishes

    Get PDF
    Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium-based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long-distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta-analysis of 2,209 published in situ predator–prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities

    Forensic odontology: Assessing bite wounds to determine the role of teeth in piscivorous fishes

    Get PDF
    Teeth facilitate the acquisition and processing of food in most vertebrates. However, relatively little is known about the functions of the diverse tooth morphologies observed in fishes. Piscivorous fishes (fish-eating fish) are crucial in shaping community structure and rely on their oral teeth to capture and/or process prey. However, how teeth are utilized in capturing and/or processing prey remains unclear. Most studies have determined the function of teeth by assessing morphological traits. The behavior during feeding, however, is seldom quantified. Here, we describe the function of teeth within piscivorous fishes by considering how morphological and behavioral traits interact during prey capture and processing. This was achieved through aquarium-based performance experiments, where prey fish were fed to 12 species of piscivorous fishes. Building on techniques in forensic odontology, we incorporate a novel approach to quantify and categorize bite damage on prey fish that were extracted from the piscivore’s stomachs immediately after being ingested. We then assess the significance of morphological and behavioral traits in determining the extent and severity of damage inflicted on prey fish. Results show that engulfing piscivores capture their prey whole and head-first. Grabbing piscivores capture prey tail-first using their teeth, process them using multiple headshakes and bites, before spitting them out, and then re-capturing prey head-first for ingestion. Prey from engulfers sustained minimal damage, whereas prey from grabbers sustained significant damage to the epaxial musculature. Within grabbers, headshakes were significantly associated with more severe damage categories. Headshaking behavior damages the locomotive muscles of prey, presumably to prevent escape. Compared to non-pharyngognaths, pharyngognath piscivores inflict significantly greater damage to prey. Overall, when present, oral jaw teeth appear to be crucial for both prey capture and processing (immobilization) in piscivorous fishes

    A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues

    Get PDF
    Ctenochaetus striatus is one of the most abundant surgeonfishes on Indo-Pacific coral reefs, yet the functional role and feeding ecology of this species remain unclear. This species is reported to possess a rigid structure in its palate that is used for scraping, but some authors have reported that this element is comprised of soft tissue. To resolve the nature and role of this structure in the feeding ecology of C. striatus we examined evidence from anatomical observations, scanning electron microscopy, histology, X-ray micro-computed tomography scanning, highspeed video and field observations. We found that C. striatus from the Great Barrier Reef possess a retention plate (RP) on their palates immediately posterior to the premaxillary teeth which is soft, covered in a thin veneer of keratin with a papillate surface. This RP appears to be used during feeding, but does not appear to be responsible for the removal of material, which is achieved primarily by a fast closure of the lower jaw. We infer that the RP acts primarily as a 'dustpan', in a 'dustpan and brush' feeding mechanism, to facilitate the collection of particulate material from algal turfs

    The role of the reef flat in coral reef trophodynamics: past, present, and future

    Get PDF
    The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields

    The role of the reef flat in coral reef trophodynamics: Past, present, and future

    Get PDF
    The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.Fish counts were conducted under a Great Barrier Reef Marine Parks Permit (Permit number: G04/12937.1) and funded by the Australian Research Council (DRB)

    Morphological and functional diversity of piscivorous fishes on coral reefs

    No full text
    Piscivory is a significant ecosystem function on coral reefs, with up to 53% of species on reefs being regarded as piscivorous. Despite this ecological importance, the species that contribute to this function have not been assessed in a broad comparative, morphological context. We therefore conducted a morphological assessment of piscivorous coral reef fishes based on a comparative analysis of 119 species, linking morphology with ecological traits (habitat and activity). After accounting for phylogenetic relationships, we found that head length, premaxilla–maxilla (pmx–mx) length, body depth, and eye size mark the primary axis of variation among species. Pmx–mx length is strongly correlated with both vertical and horizontal gape size. We identify three distinct ecomorphotypes: diurnal benthic, nocturnal, and pelagic piscivores. Benthic diurnal and nocturnal piscivores display a wide array of pmx–mx lengths, potentially reflecting the large array of prey sizes and shapes in benthic habitats. This diversity highlights the potential for niche partitioning based on maximum ingestible prey sizes. By comparison, pmx–mx lengths in pelagic piscivores are more restricted, suggesting limited variance in prey sizes or restrictions associated with their feeding mode. Fin shape was also a primary driver of variation between benthic and pelagic predators. The ecomorphotype of nocturnal piscivores suggests that although they are benthic-associated during daytime, these forms leave the reef at night to feed in more open habitats. When analyzing diurnal benthic piscivores alone, we found a major axis of variation between deep-bodied piscivores with large gapes and large head lengths versus fusiform piscivores with high fin aspect ratio values. This continuum appears to describe the relative strength of benthic associations. Overall, we provide a broad quantitative framework for understanding the morphology and potential functions of piscivorous fishes on coral reefs
    corecore