35 research outputs found

    Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery

    Get PDF
    A method to recover both Br and Br-free plastic from brominated flame retardant high impact polystyrene (HIPS-Br) was proposed. HIPS-Br containing 15% Br was treated in autoclave at 280℃ using water or KOH solution of various amounts and concentrations. Hydrothermal treatment (30 ml water) leads to 90% debromination of 1 g HIPS-Br but plastic is strongly degraded and could not be recovered. previous termAlkalinenext term hydrothermal treatment (45 ml or 60 ml KOH 1 M) showed similar debromination for up to 12 g HIPS-Br and plastic was recovered as pellets with molecular weight distribution close to that of the initial material. Debromination occurs at melt plastic/KOH solution interface when liquid/vapour equilibrium is attained inside autoclave (280℃ and 7 MPa in our experimental conditions) and depends on the plastic amount/KOH volume ratio. The antimony oxide synergist from HIPS-Br remains in recovered plastic during treatment. A pictorial imagination of the proposed debromination process is presented.</p

    Storage Security in Cloud Computing: Data Auditing Protocols

    Get PDF
    Cloud computing has emerged as a necessity for hosting data on cloud servers so that information can be accessed and shared remotely. It was quickly adopted because it provides quality of service for various remotely available, easy-to-configure, and easy-to- use products, such as IaaS (Infrastructure as a Service) or PaaS (Platform as a Service). However, this new paradigm of data hosting brings new challenges. Some of the challenges related to the issue of security require independent audit services to verify the integrity of cloud-hosted data. With many end users and companies moving from on-premise to cloud models for their business, cloud data security is a critical concept that needs to be managed. First, we identify security requirements. Second, we look at potential solutions to ensure data integrity in cloud storage. Last, we propose a data auditing solution that can be used to detect corrupt data or file anomalies in the storage system

    Apiaceae essential oils: boosters of terbinafine activity against dermatophytes and potent anti-inflammatory effectors

    Get PDF
    Dermatophyte infections represent an important public health concern, affecting up to 25% of the world’s population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug– drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1b, IL-8 and TNF-a) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26–0.31. At the tested concentrations (6.25–25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1b release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-a production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis

    Environmental Degradation of Plastic Composites with Natural Fillers—A Review

    No full text
    Polymer composites are widely used modern-day materials, specially designed to combine good mechanical properties and low density, resulting in a high tensile strength-to-weight ratio. However, materials for outdoor use suffer from the negative effects of environmental factors, loosing properties in various degrees. In particular, natural fillers (particulates or fibers) or components induce biodegradability in the otherwise bio inert matrix of usual commodity plastics. Here we present some aspects found in recent literature related to the effect of aggressive factors such as temperature, mechanical forces, solar radiation, humidity, and biological attack on the properties of plastic composites containing natural fillers

    The Thermochemical Conversion of Forestry Residues from Silver Fir (<i>Abies alba</i> Mill.) by Torrefaction and Pyrolysis

    No full text
    Forestry residue is a renewable energy biomass whose valorization has increased due to the interest in replacing exhaustible and environmentally unfriendly fossil resources. Needles, cones and bark from silver fir were thermally processed by separated and combined torrefaction (250 °C) and pyrolysis (550 °C). The torrefaction removed the humidity and extractives and degraded the hemicelluloses, significantly decreasing the oxygen content to ~11 wt% and increasing the carbon content to ~80 wt%, while enhancing the calorific value of the solids (~32 MJ/kg). The pyrolysis produced solid materials with high amounts of fixed carbon (~60–70 wt%) and high heating values, of ~29 MJ/kg. The combined torrefaction + pyrolysis increased the energy yield of the process and decreased the O/C and H/C atomic ratios to about 0.1 and 0.5, respectively, which is close to those of coals. It also led to condensable products with more homogeneously distributed compounds, regardless of the initial biomass type. More than 110 chemical compounds were confirmed in the condensable products, in amounts that depended on the type of starting material and on the thermal treatment. These included the following: terpenes, from extractives; furans, acids and linear ketones, from hemicelluloses; cyclic ketones and saccharides, from cellulose; and aromatic hydrocarbons and phenol derivatives, from lignin. Clear distinctions between the thermal procedures and the sample origins were evidenced by an exploratory data analysis (PCA), which suggested the presence of different types of lignin in the three starting materials

    Copyrolysis of scrap tires with oily wastes

    No full text
    WOS: 000303088200025In this study, the conversion of hazardous wastes into liquid fuels was investigated. The pyrolysis of bilge water oil and oil sludge from ships, scrap tires and their blends was carried out at 400 and 500 degrees C in absence and presence of catalyst. A commercial fluid catalytic cracking catalyst and Red Mud were used as catalyst. Pyrolysis products were separated as gas, oil and char. The pyrolytic oils were characterized by using gas chromatography-mass selective detector (GC-MSD) and H-1 nuclear magnetic resonance (H-1-NMR). The effect of temperature and catalyst on the product distribution and the composition of oil from pyrolysis were investigated. Co-pyrolysis of scrap tire with oily wastes from ships produced oil that could be used as fuel, while its pyrolysis alone produced oil that could be used as a chemical feedstock. The results obtained in this study showed that co-pyrolysis of oily wastes with scrap tires could be an environmentally friendly way for the transformation of hazardous wastes into valuable products such as chemicals or fuels. (C) 2011 Elsevier B.V. All rights reserved.Ege UniversityEge University [2009-FEN-092]; European Social Fund "Cristofor I. Simionescu" Postdoctoral Fellowship Program [POSDRU/89/1.5/S/55216]The financial support from Ege University under contract 2009-FEN-092 is highly appreciated. Support for Dr. Mihai Brebu from European Social Fund "Cristofor I. Simionescu" Postdoctoral Fellowship Program (ID POSDRU/89/1.5/S/55216) is acknowledged

    Pyrolysis of the tetra pak

    No full text
    WOS: 000270629600007PubMed ID: 19674884This study deals with pyrolysis of tetra pak which is widely used as an aseptic beverage packaging material. Pyrolysis experiments were carried out under inert atmosphere in a batch reactor at different temperatures and by different pyrolysis modes (one- and two-step). The yields of char, liquid and gas were quantified. Pyrolysis liquids produced were collected as three separate phases; aqueous phase, tar and polyethylene wax. Characterization of wax and the determination of the total amount of phenols in aqueous phase were performed. Chemical compositions of gas and char products relevant to fuel applications were determined. Pure aluminum can be also recovered by pyrolysis. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved

    Co-pyrolysis of pine cone with synthetic polymers

    No full text
    WOS: 000278135400017Biomass from pine cone (Pinus pinea L.) was co-pyrolyzed with synthetic polymers (PE, PP and PS) in order to investigate the effect of biomass and plastic nature on the product yields and quality of pyrolysis oils and chars. The pyrolysis temperature was of 500 degrees C and it was selected based on results from thermogravimetric analysis of the studied samples. Co-pyrolysis products namely gases, aqueous and tar fraction coming from biomass, oils from synthetic polymers and residual char were collected and analyzed. Due to the synergistic effect in the pyrolysis of the biomass/polymer mixtures, higher amounts of liquid products were obtained compared to theoretical ones. To investigate the effect of biomass content on the co-pyrolysis, the co-pyrolysis of pure cellulose as model natural polymer for biomass with polymer mixture was also carried out. In the presence of cellulose, degradation reaction leading to more gas formation and less char yield was more advanced than in the case of co-pyrolysis with pine cone. Co-pyrolysis gave polar oxygenated compounds distributed between tar and aqueous phase and hydrocarbon oils with composition depending on the type of synthetic polyolefin. Co-pyrolysis chars had higher calorific values compared to pyrolysis of biomass alone. (C) 2010 Elsevier Ltd. All rights reserved
    corecore