530 research outputs found

    A theoretical model for power generation via liquid crystal elastomers

    Full text link
    Motivated by the need for new materials and green energy production and conversion processes, a class of mathematical models for liquid crystal elastomers integrated within a theoretical charge pump electrical circuit is considered. The charge pump harnesses the chemical and mechanical properties of liquid crystal elastomers transitioning from the nematic to isotropic phase when illuminated or heated to generate higher voltage from a lower voltage supplied by a battery. For the material constitutive model, purely elastic and neoclassical-type strain energy densities applicable to a wide range of monodomain nematic elastomers are combined, while elastic and photo-thermal responses are decoupled to make the investigation analytically tractable. By varying the model parameters of the elastic and neoclassical terms, it is found that liquid crystal elastomers are more effective than rubber when used as dielectric material within a charge pump capacitor

    A note on non-homogeneous deformations with homogeneous Cauchy stress for a strictly rank-one convex energy in isotropic hyperelasticity

    Get PDF
    It has recently been shown that for a Cauchy stress response induced by a strictly rank-one convex hyperelastic energy potential, a homogeneous Cauchy stress tensor field cannot correspond to a non-homogeneous deformation if the deformation gradient has discrete values, i.e. if the deformation is piecewise affine linear and satisfies the Hadamard jump condition. In this note, we expand upon these results and show that they do not hold for arbitrary deformations by explicitly giving an example of a strictly rank-one convex energy and a non-homogeneous deformation such that the induced Cauchy stress tensor is constant. In the planar case, our example is related to another previous result concerning criteria for generalized convexity properties of conformally invariant energy functions, which we extend to the case of strict rank-one convexity

    Hyperelastic bodies under homogeneous Cauchy stress induced by non-homogeneous finite deformations

    Get PDF
    We discuss whether homogeneous Cauchy stress implies homogeneous strain in isotropic nonlinear elasticity. While for linear elasticity the positive answer is clear, we exhibit, through detailed calculations, an example with inhomogeneous continuous deformation but constant Cauchy stress. The example is derived from a non rank-one convex elastic energy

    Likely equilibria of stochastic hyperelastic spherical shells and tubes

    Get PDF
    In large deformations, internally pressurised elastic spherical shells and tubes may undergo a limit-point, or inflation, instability manifested by a rapid transition in which their radii suddenly increase. The possible existence of such an instability depends on the material constitutive model. Here, we revisit this problem in the context of stochastic incompressible hyperelastic materials, and ask the question: what is the probability distribution of stable radially symmetric inflation, such that the internal pressure always increases as the radial stretch increases? For the classic elastic problem, involving isotropic incompressible materials, there is a critical parameter value that strictly separates the cases where inflation instability can occur or not. By contrast, for the stochastic problem, we show that the inherent variability of the probabilistic parameters implies that there is always competition between the two cases. To illustrate this, we draw on published experimental data for rubber, and derive the probability distribution of the corresponding random shear modulus to predict the inflation responses for a spherical shell and a cylindrical tube made of a material characterised by this parameter.Comment: arXiv admin note: text overlap with arXiv:1808.0126

    Likely oscillatory motions of stochastic hyperelastic solids

    Get PDF
    Stochastic homogeneous hyperelastic solids are characterised by strain-energy densities where the parameters are random variables defined by probability density functions. These models allow for the propagation of uncertainties from input data to output quantities of interest. To investigate the effect of probabilistic parameters on predicted mechanical responses, we study radial oscillations of cylindrical and spherical shells of stochastic incompressible isotropic hyperelastic material, formulated as quasi-equilibrated motions where the system is in equilibrium at every time instant. Additionally, we study finite shear oscillations of a cuboid, which are not quasi-equilibrated. We find that, for hyperelastic bodies of stochastic neo-Hookean or Mooney-Rivlin material, the amplitude and period of the oscillations follow probability distributions that can be characterised. Further, for cylindrical tubes and spherical shells, when an impulse surface traction is applied, there is a parameter interval where the oscillatory and non-oscillatory motions compete, in the sense that both have a chance to occur with a given probability. We refer to the dynamic evolution of these elastic systems, which exhibit inherent uncertainties due to the material properties, as `likely oscillatory motions'

    Likely striping in stochastic nematic elastomers

    Get PDF
    For monodomain nematic elastomers, we construct generalised elastic-nematic constitutive models combining purely elastic and neoclassical-type strain-energy densities. Inspired by recent developments in stochastic elasticity, we extend these models to stochastic-elastic-nematic forms where the model parameters are dened by spatially-independent probability density functions at a continuum level. To investigate the behaviour of these systems and demonstrate the eects of the probabilistic parameters, we focus on the classical problem of shear striping in a stretched nematic elastomer for which the solution is given explicitly. We nd that, unlike in the neoclassical case where the inhomogeneous deformation occurs within a universal interval that is independent of the elastic modulus, for the elastic-nematic models, the critical interval depends on the material parameters. For the stochastic extension, the bounds of this interval are probabilistic, and the homogeneous and inhomogeneous states compete in the sense that both have a a given probability to occur. We refer to the inhomogeneous pattern within this interval as `likely striping'

    Instabilities in liquid crystal elastomers

    Get PDF
    Stability is an important and fruitful avenue of research for liquid crystal elastomers. At constant temperature, upon stretching, the homogeneous state of a nematic body becomes unstable, and alternating shear stripes develop at very low stress. Moreover, these materials can experience classical mechanical effects, such as necking, void nucleation and cavitation, and inflation instability, which are inherited from their polymeric network. We investigate the following two problems: First, how do instabilities in nematic bodies change from those found in purely elastic solids? Second, how are these phenomena modified if the material constants fluctuate? To answer these questions, we present a systematic study of instabilities occurring in nematic liquid crystal elastomers, and examine the contribution of the nematic component and of fluctuating model parameters that follow probability laws. This combined analysis may lead to more realistic estimations of subsequent mechanical damage in nematic solid materials

    A microstructure-based hyperelastic model for open-cell solids

    Get PDF
    Mesoscopic continuum hyperelastic models for open-cell solids subject to large elastic deformations are derived from the architecture of the cellular body and the microscopic responses of the cell walls. These models are valid for general structures, with randomly oriented cell walls, made from an arbitrary isotropic nonlinear hyperelastic material, and subject to finite triaxial stretches. Their analyses provide global descriptors of the cellular structure, such as nonlinear stretch and shear moduli, and Poisson's ratio. Comparisons with numerical simulations show that the mesoscopic models capture well the mechanical responses under large strain deformations of three-dimensional periodic structures and of two-dimensional honeycombs made from a neo-Hookean material

    A theoretical model for power generation via liquid crystal elastomers

    Get PDF
    Motivated by the need for new materials and green energy production and conversion processes, a class of mathematical models for liquid crystal elastomers (LCEs) integrated within a theoretical charge pump electrical circuit is considered. The charge pump harnesses the chemical and mechanical properties of LCEs transitioning from the nematic to isotropic phase when illuminated or heated to generate higher voltage from a lower voltage supplied by a battery. For the material constitutive model, purely elastic and neoclassical-type strain energy densities applicable to a wide range of monodomain nematic elastomers are combined, while elastic and photothermal responses are decoupled to make the investigation analytically tractable. By varying the model parameters of the elastic and neoclassical terms, it is found that LCEs are more effective than rubber when used as dielectric material within a charge pump capacitor

    A theoretical liquid crystal elastomer model that mimics the elasticity of cat skin

    Get PDF
    A mathematical model for nematic liquid crystal elastomers is proposed that mimics the elastic response of cat skin where reorientation of dermal fibres produces an increase in the thickness direction under tensile stretch. To capture this unusual effect, the uniaxial order parameter in the nematic elastomer model is allowed to decrease then increase again, and the critical stretch at which this change of monotonicity occurs and where the director also rotates suddenly is predicted. In addition, the model parameters are described by probability density functions and their uncertainty is propagated numerically to the predicted mechanical results
    • …
    corecore