74 research outputs found

    Almost sharp nonlinear scattering in one-dimensional Born-Infeld equations arising in nonlinear Electrodynamics

    Full text link
    We study decay of small solutions of the Born-Infeld equation in 1+1 dimensions, a quasilinear scalar field equation modeling nonlinear electromagnetism, as well as branes in String theory and minimal surfaces in Minkowski space-times. From the work of Whitham, it is well-known that there is no decay because of arbitrary solutions traveling to the speed of light just as linear wave equation. However, even if there is no global decay in 1+1 dimensions, we are able to show that all globally small Hs+1×HsH^{s+1}\times H^s, s>12s>\frac12 solutions do decay to the zero background state in space, inside a strictly proper subset of the light cone. We prove this result by constructing a Virial identity related to a momentum law, in the spirit of works \cite{KMM,KMM1}, as well as a Lyapunov functional that controls the H˙1×L2\dot H^1 \times L^2 energy.Comment: 12 pages; This is version 2. Some typos corrected and sections organized differently for ease readin

    On the variational structure of breather solutions

    Full text link
    In this paper we give a systematic and simple account that put in evidence that many breather solutions of integrable equations satisfy suitable variational elliptic equations, which also implies that the stability problem reduces in some sense to (i)(i) the study of the spectrum of explicit linear systems (\emph{spectral stability}), and (ii)(ii) the understanding of how bad directions (if any) can be controlled using low regularity conservation laws. We exemplify this idea in the case of the modified Korteweg-de Vries (mKdV), Gardner, and sine-Gordon (SG) equations. Then we perform numerical simulations that confirm, at the level of the spectral problem, our previous rigorous results, where we showed that mKdV breathers are H2H^2 and H1H^1 stable, respectively. In a second step, we also discuss the Gardner and the Sine-Gordon cases, where the spectral study of a fourth-order linear matrix system is the key element to show stability. Using numerical methods, we confirm that all spectral assumptions leading to the H2×H1H^2\times H^1 stability of SG breathers are numerically satisfied, even in the ultra-relativistic, singular regime. In a second part, we study the periodic mKdV case, where a periodic breather is known from the work of Kevrekidis et al. We rigorously show that these breathers satisfy a suitable elliptic equation, and we also show numerical spectral stability. However, we also identify the source of nonlinear instability in the case described in Kevrekidis et al. Finally, we present a new class of breather solution for mKdV, believed to exist from geometric considerations, and which is periodic in time and space, but has nonzero mean, unlike standard breathers.Comment: 55 pages; This paper is an improved version of our previous paper 1309.0625 and hence we replace i
    • …
    corecore