8,948 research outputs found
How alternative food networks work in a metropolitan area? An analysis of Solidarity Purchase Groups in Northern Italy
Our paper focuses on Solidarity Purchase Group (SPG) participants located in a highly urbanized area, with the aim to investigate the main motivations underlining their participation in a SPG and provide a characterization of them. To this end, we carried out a survey of 795 participants involved in 125 SPGs in the metropolitan area of Milan (Italy). Taking advantage of a questionnaire with 39 questions, we run a factor analysis and a two-step cluster analysis to identify different profiles of SPG participants. Our results show that the system of values animating metropolitan SPG practitioners does not fully conform to that traditionally attributed to an alternative food network (AFN). In fact, considerations linked to food safety and healthiness prevail on altruistic motives such as environmental sustainability and solidarity toward small producers. Furthermore, metropolitan SPGs do not consider particularly desirable periurban and local food products. Observing the SPGs from this perspective, it emerges as such initiatives can flourish also in those places where the lack of connection with the surrounding territory is counterbalanced by the high motivation to buy products from trusted suppliers who are able to guarantee genuine and safe products, not necessarily located nearby
Local economies and consumer participation: the organic food fairs
New consumption habits stand out against the idea of a rational consumer, which is aimed at maximizing utility according to budget constraint. Presently, people have the tendency to behave differently according to various purchase opportunities; a significant role is played by both ethical sides and selfless motivations. These new trends fall within the context of a new social paradigm that foresees postmodern society’s rise. Consumers have the tendency to use the market as an arena in which political, ethical and environmental issues may arise, starting a new trend of an alternative consumption called “political consumerism”. In this paper we’ll try to understand how new consumption habits mirror features of postmodern society, starting with research work on specialized fairs of organic food in Sicily
Assessment of Posidonia oceanica (L.) Delile conservation status by standard and putative approaches: the case study of Santa Marinella meadow (Italy, W Mediterranean)
The conservation status of the Posidonia oceanica meadow at Santa Marinella (Rome) was evaluated through both standard (bed density, leaf biometry, "A" coefficient, Leaf Area Index, rhizome production) and biochemical/genetic approaches (total phenol content and Random Amplified Polymorphic DNA marker). The bio-chemical/genetic results are in agreement with those obtained by standard approaches. The bed under study was ranked as a disturbed one, due to its low density, and high heterogeneity in leaf biometry, LAI values, "A" coefficient and primary production. This low quality ranking is confirmed by both mean phenol content in plants, quite high and scattered, and by the low genetic variability in the meadow, with a very high similarity of specimen at a local scale. Hence, these two putative approaches clearly identify the endangered conservation status of the meadow. They link plant biodiversity and ecophysiology to ecosystem 'health'. Furthermore, they are repeatable and standardizable and could be usefully introduced in meadows monitoring to check environmental quality
Phytotoxicity to and uptake of flumequine used in intensive aquaculture on the aquatic weed, Lythrum salicaria L.
Phytotoxicity of Flumequine on the aquatic weed Lythrum salicaria L. was determined by two laboratory models: a single concentration test, by which the effects of 100 mg l(-1) were evaluated after 10, 20, 30 days and a multiple concentration test, by which the effects of 5000-1000-500-100-50 mu g l(-1) were evaluated after 35-day exposure. 100 mg l(-1) are highly toxic and significantly decrease the growth of plants; this effect increases with time. Concentrations between 5000 and 50 mu g l(-1) induced hormesis in plants, by significantly increasing mean number and dimension of leaves and secondary roots. The effect is the highest at 50 mu g l(-1) and decreases with increase in concentration. Both toxic effect and hormesis can be related to plant drug uptake, quite high, in the order of mu g g(-1). The ecological implication of Flumequine contamination in aquatic environments and the possible use of Lythrum salicaria for bioremediation and/ or monitoring technique are discussed. (C) 2000 Elsevier Science Ltd. All rights reserved
Perceptions of Renal Disease Risk Among African Americans: A Review of the Literature
African Americans are disproportionately at risk for renal disease, especially those with type 2 diabetes (McDonough et al., 2011). Despite this disease disparity, the literature lacks research on renal disease awareness and risk perceptions among African Americans with type 2 diabetes. Therefore, a literature review guided by the Common Sense Model was conducted to review and synthesize the literature on African Americans’ awareness of renal disease and existing risk perceptions, capturing sociocultural factors in the African American community that could influence the development of those risk perceptions. The literature identified an overall lack of knowledge about renal disease risk factors, inaccurate risk perceptions, and a low concern for renal disease among African Americans. Numerous sociocultural factors were identified that could be influential to African Americans’ renal disease awareness and risk perceptions, and these can be used to guide future care and policy
Undisturbed Posidonia oceanica meadows maintain the epiphytic bacterial community in different environments
Seagrasses harbour different and rich epiphytic bacterial communities. These microbes may establish intimate and
symbiotic relationships with the seagrass plants and change according to host species, environmental conditions, and/or
ecophysiological status of their seagrass host. Although Posidonia oceanica is one of the most studied seagrasses in the world, and bacteria associated with seagrasses have been studied for over a decade, P. oceanica’s microbiome remains
hitherto little explored. Here, we applied 16S rRNA amplicon sequencing to explore the microbiome associated with the
leaves of P. oceanica growing in two geomorphologically different meadows (e.g. depth, substrate, and turbidity) within the Limassol Bay (Cyprus). The morphometric (leaf area, meadow density) and biochemical (pigments, total phenols) descriptors highlighted the healthy conditions of both meadows. The leaf-associated bacterial communities showed similar structure and composition in the two sites; core microbiota members were dominated by bacteria belonging to the Thalassospiraceae, Microtrichaceae, Enterobacteriaceae, Saprospiraceae, and Hyphomonadaceae families. This analogy, even under different geomorphological conditions, suggest that in the absence of disturbances, P. oceanica maintains characteristic-associated bacterial communities. This study provides a baseline for the knowledge of the P. oceanica microbiome and further supports its use as a putative seagrass descriptor
A Tight Interaction between the Native Seagrass Cymodocea nodosa and the Exotic Halophila stipulacea in the Aegean Sea Highlights Seagrass Holobiont Variations
Seagrasses harbour bacterial communities with which they constitute a functional unit called holobiont that responds as a whole to environmental changes. Epiphytic bacterial communities rapidly respond to both biotic and abiotic factors, potentially contributing to the host fitness. The Lessepsian migrant Halophila stipulacea has a high phenotypical plasticity and harbours a highly diverse epiphytic bacterial community, which could support its invasiveness in the Mediterranean Sea. The current study aimed to evaluate the Halophila/Cymodocea competition in the Aegean Sea by analysing each of the two seagrasses in a meadow zone where these intermingled, as well as in their monospecific zones, at two depths. Differences in holobionts were evaluated using seagrass descriptors (morphometric, biochemical, elemental, and isotopic composition) to assess host changes, and 16S rRNA gene to identify bacterial community structure and composition. An Indicator Species Index was used to identify bacteria significantly associated with each host. In mixed meadows, native C. nodosa was shown to be affected by the presence of exotic H. stipulacea, in terms of both plant descriptors and bacterial communities, while H. stipulacea responded only to environmental factors rather than C. nodosa proximity. This study provided evidence of the competitive advantage of H. stipulacea on C. nodosa in the Aegean Sea and suggests the possible use of associated bacterial communities as an ecological seagrass descriptor
Comparative analysis of bed density, total phenol content and protein expression pattern in Posidonia oceanica (L.) Delile
Posidonia oceanica meadows are experiencing a progressive decline, and monitoring their status is crucial for the maintenance of these ecosystems. We performed a comparativeanalysis of bed density, total phenol content and protein expression pattern to assess the conservation status of Posidonia plants from the S. Marinella (Rome, Italy) meadow. The total phenol content was inversely related to maximum bed density, confirming the relationship between high phenol content and stressful conditions. In addition, protein expression pattern profilesshowed that the number of differentially expressed proteins was dramatically reduced in the latest years compared to previous analyses. Our results support the usefulness of integrating solid descriptors, such as phenol content, with novel biochemical/molecular approaches in the monitoring of meadows
Robust stationary entanglement of two coupled qubits in independent environments
The dissipative dynamics of two interacting qubits coupled to independent
reservoirs at nonzero temperatures is investigated, paying special attention to
the entanglement evolution. The counter-rotating terms in the qubit-qubit
interaction give rise to stationary entanglement, traceable back to the ground
state structure. The robustness of this entanglement against thermal noise is
thoroughly analyzed, establishing that it can be detected at reasonable
experimental temperatures. Some effects linked to a possible reservoir
asymmetry are brought to light.Comment: 8 pages, 6 figures; version accepted for publication on Eur. Phys. J.
- …