16 research outputs found

    Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I

    Get PDF
    Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases

    A Single Amino Acid Mutation in SNAP-25 Induces Anxiety-Related Behavior in Mouse

    Get PDF
    Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser187 of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser187 of SNAP-25 with Ala using “knock-in” technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects

    Immature Cryopreserved Ovary Restores Puberty and Fertility in Mice without Alteration of Epigenetic Marks

    Get PDF
    BACKGROUND: Progress in oncology could improve survival rate in children, but would probably lead to impaired fertility and puberty. In pre-pubertal girls, the only therapeutic option is the cryopreservation of one ovary. Three births have been reported after reimplantation of cryopreserved mature ovary. Conversely, reimplantation of ovary preserved before puberty (defined as immature ovary) has never been performed in humans. METHODOLOGY/PRINCIPAL FINDINGS: In order to analyze ovarian function, we performed transplantation using fresh or cryopreserved immature grafts in pre-pubertal or adult mice. Puberty as well as cyclic hormonal activity was restored. All follicle populations were present although a significant reduction in follicle density was observed with or without cryopreservation. Although fertility was restored, the graft is of limited life span. Because ex vivo ovary manipulation and cryopreservation procedure, the status of genomic imprinting was investigated. Methylation status of the H19 and Lit1 Imprinting Control Regions in kidney, muscle and tongue of offsprings from grafted mice does not show significant alteration when compared to those of unoperated mice. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that immature ovarian grafting can restore spontaneous puberty and fertility. However, these data suggest that follicle depletion leads to premature ovarian failure. This study addresses the very important epigenetics issue, and provides valuable information to the study of ovarian transplantation suggesting that these procedures do not perturb normal epigenetics marks. These results are highly relevant to the reimplantation question of immature cortex in women
    corecore