154 research outputs found

    Therapeutic potential of anterior cruciate ligament-derived stem cells for anterior cruciate ligament reconstruction

    Get PDF
    We recently reported that the ruptured regions of the human anterior cruciate ligament (ACL) contained vascular- derived stem cells, which showed the potential for high expansion and multilineage differentiation. In this study, we performed experiments to test the hypothesis that ACL-derived CD34+ cells could contribute to tendon-bone healing. ACL-derived cells were isolated from the rupture site of human ACL by fluorescenceactivated cell sorting. Following ACL reconstruction, immunodeficient rats received intracapsular administration of either ACL-derived CD34+ cells, nonsorted (NS) cells, CD34+ cells, or phosphate-buffered saline (PBS). We also performed in vitro cell proliferation assays and enzyme-linked immunosorbent assays for vascular endothelial growth factor (VEGF) secretion. We confirmed the recruitment of the transplanted cells into the perigraft site after intracapuslar injection by immunohistochemical staining at week 1. Histological evaluation showed a greater area of collagen fiber formation and more collagen type II expression in the CD34+ group than the other groups at the week 2 time point. Immunostaining with isolectin B4 and rat osteocalcin demonstrated enhanced angiogenesis and osteogenesis in the CD34+ group at week 2. Moreover, double immunohistochemical staining for human-specific endothelial cell (EC) and osteoblast (OB) markers at week 2 demonstrated a greater ability of differentiation into ECs and OBs in the CD34+ group. Microcomputerized tomography showed the greatest healing of perigraft bone at week 4 in the CD34+ cell group, and the failure load of tensile test at week 8 demonstrated the greatest biomechanical strength in the CD34+ group. Furthermore, the in vitro studies indicated that the CD34+ group was superior to the other groups in their cell proliferation and VEGF secretion capacities. We demonstrated that ACL-derived CD34+ cells contributed to the tendon-bone healing after ACL reconstruction via the enhancement of angiogenesis and osteogenesis, which also contributed to an increase in biomechanical strength. © 2012 Cognizant Comm. Corp

    Hyperuricemia Is Independently Associated with Coronary Heart Disease and Renal Dysfunction in Patients with Type 2 Diabetes Mellitus

    Get PDF
    AIMS: To investigate the relationship between hyperuricemia (HUA) and the clinical backgrounds in Japanese patients with type 2 diabetes mellitus. METHODS: After a cross-sectional study evaluating the association of HUA with the clinical characteristics in 1,213 patients with type 2 diabetes mellitus, the estimated glomerular filtration rate (eGFR) and the incidence of diabetic macroangiopathies was investigated in a prospective observational study in 1,073 patients during a 3.5 year period. HUA was defined by serum uric acid levels >327 μmol/L or as patients using allopurinol. RESULTS: The frequency of HUA was significantly higher in the diabetic patients (32% in men and 15% in women) than in the normal controls (14% in men and 1% in women). In total, HUA was found in 299 (25%) of the patients during the cross-sectional study. Even after adjusting for sex, drinking status, treatment for diabetes mellitus, body mass index, hypertension, use of diuretics, hyperlipidemia, HbA1c and/or the eGFR, the HUA was independently associated with some diabetic complications. The eGFR was significantly reduced in HUA patients compared to those with normouricemia in the 12 months after observation was started. HUA was also an independent risk factor for coronary heart disease even after adjustment in the Cox proportional hazard model. CONCLUSIONS: HUA is a associated with diabetic micro- and macroangiopathies. HUA is a predictor of coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. However, the influence of HUA is considered to be limited

    Images of Eyes Enhance Investments in a Real-Life Public Good

    Get PDF
    A key issue in cooperation research is to determine the conditions under which individuals invest in a public good. Here, we tested whether cues of being watched increase investments in an anonymous public good situation in real life. We examined whether individuals would invest more by removing experimentally placed garbage (paper and plastic bottles) from bus stop benches in Geneva in the presence of images of eyes compared to controls (images of flowers). We provided separate bins for each of both types of garbage to investigate whether individuals would deposit more items into the appropriate bin in the presence of eyes. The treatment had no effect on the likelihood that individuals present at the bus stop would remove garbage. However, those individuals that engaged in garbage clearing, and were thus likely affected by the treatment, invested more time to do so in the presence of eyes. Images of eyes had a direct effect on behaviour, rather than merely enhancing attention towards a symbolic sign requesting removal of garbage. These findings show that simple images of eyes can trigger reputational effects that significantly enhance on non-monetary investments in anonymous public goods under real life conditions. We discuss our results in the light of previous findings and suggest that human social behaviour may often be shaped by relatively simple and potentially unconscious mechanisms instead of very complex cognitive capacities

    Human Umbilical Cord Blood-Derived CD34+ Cells Reverse Osteoporosis in NOD/SCID Mice by Altering Osteoblastic and Osteoclastic Activities

    Get PDF
    Osteoporosis is a bone disorder associated with loss of bone mineral density and micro architecture. A balance of osteoblasts and osteoclasts activities maintains bone homeostasis. Increased bone loss due to increased osteoclast and decreased osteoblast activities is considered as an underlying cause of osteoporosis.The cures for osteoporosis are limited, consequently the potential of CD34+ cell therapies is currently being considered. We developed a nanofiber-based expansion technology to obtain adequate numbers of CD34(+) cells isolated from human umbilical cord blood, for therapeutic applications. Herein, we show that CD34(+) cells could be differentiated into osteoblastic lineage, in vitro. Systemically delivered CD34(+) cells home to the bone marrow and significantly improve bone deposition, bone mineral density and bone micro-architecture in osteoporotic mice. The elevated levels of osteocalcin, IL-10, GM-CSF, and decreased levels of MCP-1 in serum parallel the improvements in bone micro-architecture. Furthermore, CD34(+) cells improved osteoblast activity and concurrently impaired osteoclast differentiation, maturation and functionality.These findings demonstrate a novel approach utilizing nanofiber-expanded CD34(+) cells as a therapeutic application for the treatment of osteoporosis

    Single domain antibody multimers confer protection against rabies infection

    Get PDF
    Post-exposure prophylactic (PEP) neutralizing antibodies against Rabies are the most effective way to prevent infection-related fatality. The outer envelope glycoprotein of the Rabies virus (RABV) is the most significant surface antigen for generating virus-neutralizing antibodies. The small size and uncompromised functional specificity of single domain antibodies (sdAbs) can be exploited in the fields of experimental therapeutic applications for infectious diseases through formatting flexibilities to increase their avidity towards target antigens. In this study, we used phage display technique to select and identify sdAbs that were specific for the RABV glycoprotein from a naïve llama-derived antibody library. To increase their neutralizing potencies, the sdAbs were fused with a coiled-coil peptide derived from the human cartilage oligomeric matrix protein (COMP48) to form homogenous pentavalent multimers, known as combodies. Compared to monovalent sdAbs, the combodies, namely 26424 and 26434, exhibited high avidity and were able to neutralize 85-fold higher input of RABV (CVS-11 strain) pseudotypes in vitro, as a result of multimerization, while retaining their specificities for target antigen. 26424 and 26434 were capable of neutralizing CVS-11 pseudotypes in vitro by 90–95% as compared to human rabies immunoglobulin (HRIG), currently used for PEP in Rabies. The multimeric sdAbs were also demonstrated to be partially protective for mice that were infected with lethal doses of rabies virus in vivo. The results demonstrate that the combodies could be valuable tools in understanding viral mechanisms, diagnosis and possible anti-viral candidate for RABV infection

    G Protein Coupling and Second Messenger Generation Are Indispensable for Metalloprotease-dependent, Heparin-binding Epidermal Growth Factor Shedding Through Angiotensin II Type-1 Receptor

    Get PDF
    A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease- dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2 ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2 antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of Gq markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks Gq protein coupling. However, in cells expressing AT1 mutants that retain Gq protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/Gq/phospholipase C-mediated elevation of intracellular Ca2 and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation

    The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review.

    Get PDF
    BACKGROUND: The management of articular cartilage defects presents many clinical challenges due to its avascular, aneural and alymphatic nature. Bone marrow stimulation techniques, such as microfracture, are the most frequently used method in clinical practice however the resulting mixed fibrocartilage tissue which is inferior to native hyaline cartilage. Other methods have shown promise but are far from perfect. There is an unmet need and growing interest in regenerative medicine and tissue engineering to improve the outcome for patients requiring cartilage repair. Many published reviews on cartilage repair only list human clinical trials, underestimating the wealth of basic sciences and animal studies that are precursors to future research. We therefore set out to perform a systematic review of the literature to assess the translation of stem cell therapy to explore what research had been carried out at each of the stages of translation from bench-top (in vitro), animal (pre-clinical) and human studies (clinical) and assemble an evidence-based cascade for the responsible introduction of stem cell therapy for cartilage defects. This review was conducted in accordance to PRISMA guidelines using CINHAL, MEDLINE, EMBASE, Scopus and Web of Knowledge databases from 1st January 1900 to 30th June 2015. In total, there were 2880 studies identified of which 252 studies were included for analysis (100 articles for in vitro studies, 111 studies for animal studies; and 31 studies for human studies). There was a huge variance in cell source in pre-clinical studies both of terms of animal used, location of harvest (fat, marrow, blood or synovium) and allogeneicity. The use of scaffolds, growth factors, number of cell passages and number of cells used was hugely heterogeneous. SHORT CONCLUSIONS: This review offers a comprehensive assessment of the evidence behind the translation of basic science to the clinical practice of cartilage repair. It has revealed a lack of connectivity between the in vitro, pre-clinical and human data and a patchwork quilt of synergistic evidence. Drivers for progress in this space are largely driven by patient demand, surgeon inquisition and a regulatory framework that is learning at the same pace as new developments take place
    • …
    corecore