18 research outputs found

    The content and composition of organic matter in bottom sediments of the Rybnik reservoir - preliminary studies

    Get PDF
    Organic matter has important influences on the fate of environmental pollution in water dam reservoirs. The aim of the studies was to assess content of organic matter fractions in Rybnik reservoir bottom sediments, and to determine their influence on the content of heavy metals and PAHs. In three sediment samples, the content of C organic (Corg), C extracted (Cex), C humic acid (Cha), C fulvic acid (Cfa) and C non-hydrolyzed (Cnh), buffer capacity, and content of heavy metals and PAHs was analyzed. We found the highest content of Corg, Cex, Cha, Cfa and Cnh in sample 3 (the outlet, near the dam), while the lowest content was found in sample 2 (middle). The fraction of Cnh was dominant in sediment sample 3 (outlet, near dam) and 1 (inlet), whereas the fraction of Cha dominated in sample 2 (middle). Rybnik bottom sediments are characterized by their high buffer capacities (samples 3, 1) shaped among others by the high content of organic matter. The high organic matter content in samples 3 (outlet) and 1 (inlet) and also high total contents of heavy metals and PAHS in these sediments demonstrate that these pollutants have a strong affinity for organic matter in the sediments. Moreover, the highest mobility of metals, from sample 2 (middle), is connected with the low content of organic matter substances and the low buffer capacities of sediments

    INFLUENCE OF CHARCOAL CALCINATION IN FIELD CONDITIONS ON HEAVY METAL CONTENT IN PLANTS AND IN THE IMMEDIATE VICINITY OF THE RETORTS

    No full text
    One of the ways of charcoal producing is its calcination in charcoal kilns called retorts in field conditions. In the charcoal production wood of deciduous trees is being subjected to the process of dry distillation. The process affects the surrounding environment. During the process a lot of pollutants are emitted to natural environment. One of them is ash, which contains heavy metals. The paper aimed at determining the effect of charcoal calcination on heavy metal content in the soil and plant material in the immediate vicinity. Charcoal calcination causes the alkalinization of the soil to 10 metres. In the closest vicinity, the calcination process increases Mn, Cd, Ni and Cu concentrations in the soil material. Theinfluence of charcoal production on the concentrations Fe, Zn, Pb, Cr in soil material cannot be determined unanimously. The effect of the process on heavy metal content in plant material cannot be determined unanimously

    Factors influencing chemical quality of composted poultry waste

    No full text
    The need for organic recycling is justified in the case of poultry waste because after ensuring hygienization there is a chance of obtaining a compost with substantial fertilizer value. Organic recycling of slaughter waste has its justification in sustainable development and retardation of resources. In the research being described, composting of hydrated poultry slaughterhouse waste with maize straw was carried out. Combinations with fodder yeast and postcellulose lime were also introduced in order to modify chemical and physicochemical properties of the mixtures. The experiment was carried out within 110 days in 1.2 × 1.0 × 0.8 m laboratory reactors. Temperature of the biomass was recorded during composting, and the biomass was actively aerated through a perforated bottom.Composting of substrates selected in such a way caused losses of some elements in gaseous form, an increase in concentration of other elements, and changes in relationships between elements. The ability to select substrates influences compost quality. This ability is determined by chemical indicators. Among other things, compost evaluation based on carbon to nitrogen ratio shows the intensity of the composting process and possible nitrogen losses. The addition of slaughter waste to maize straw reduced the content of individual fractions of carbon in the composts, whereas the addition of postcellulose lime intensified that process. The addition of fodder yeast significantly increased the phosphorus content in the compost. Since iron compounds were used in the processing of poultry carcasses, composts that were based on this material had an elevated iron content. The applied postcellulose lime significantly increased the copper, zinc, chromium, nickel, and lead contents. Proper selection of substrates for composting of hydrated poultry slaughterhouse waste allows to obtain a compost with chemical properties that create favorable conditions for natural application of that compost. Addition of large quantities of postcellulose lime to the composting process leads to obtaining an organic-mineral substratum for cultivation or to obtaining an agent that improves soil properties. Keywords: Poultry slaughterhouse waste, Fodder yeast, Postcellulose lime, Compost, Nutrients, Fractional composition of humu

    Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil

    No full text
    The availability and affordability of fertilizers are the main risks currently faced by the fertilizer market. Therefore, there is a need to look for other sources of nutrient supply for plants, while taking care of soil properties. The application of fertilizers with the addition of functionalized materials could help in the efficient use of nutrients. The aim of the study was to assess the impact of the application of mixtures with the addition of zeolite–vermiculite composites (NaX–Ver) on the culturable microorganisms and selected soil properties. A two-year pot experiment was conducted on soil with elevated contents of cadmium, zinc, and lead. The test treatments included soil mixed with NPK and additives in two doses of NaX–Ver combined with leonardite (Leo) or lignite (L). The test plant used in the experiment was maize. The soil material was analyzed for the number of bacteria, mold fungi, actinomycetes, and ammonifiers. Furthermore, soil pH, EC, N total, and SOC contents, as well as soil respiration activity, were tested. The applied fertilizer mixtures had a great effect on changes in the N total and SOC contents. The N total increase was 45.5% in NaX–Ver3%L3% and 51% in NaX–Ver9%Leo6%, and the largest SOC increase (24.3%) was recorded in the NaX–Ver3%Leo3% treatment. The highest respiration activity was determined in NaX–Ver3%Leo3% and NaX–Ver9%Leo6%: 2.12 µg C-CO2 g−1 DM h−1 and 2.14 µg C-CO2 g−1 DM h−1, respectively. A significant correlation between pH values and the number of culturable microorganisms was found. The number of soil microorganisms depended on the type of fertilization used. The best stimulation of the number of culturable soil microorganisms was found in treatments with the addition of 3% of L or Leo in combination with NaX–Ver. The percentage increases in the number of the analyzed culturable microorganisms after the application of leonardite-based fertilization in combination with the zeolite–vermiculite composite were, on average: bacteria, 1096%; mold fungi, 1529%; actinomycetes, 1477%; ammonifiers, 910%

    Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    No full text
    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield

    Distinct Changes in Abundance of Culturable Microbial Community and Respiration Activities in Response to Mineral–Organic Mixture Application in Contaminated Soil

    No full text
    The availability and affordability of fertilizers are the main risks currently faced by the fertilizer market. Therefore, there is a need to look for other sources of nutrient supply for plants, while taking care of soil properties. The application of fertilizers with the addition of functionalized materials could help in the efficient use of nutrients. The aim of the study was to assess the impact of the application of mixtures with the addition of zeolite–vermiculite composites (NaX–Ver) on the culturable microorganisms and selected soil properties. A two-year pot experiment was conducted on soil with elevated contents of cadmium, zinc, and lead. The test treatments included soil mixed with NPK and additives in two doses of NaX–Ver combined with leonardite (Leo) or lignite (L). The test plant used in the experiment was maize. The soil material was analyzed for the number of bacteria, mold fungi, actinomycetes, and ammonifiers. Furthermore, soil pH, EC, N total, and SOC contents, as well as soil respiration activity, were tested. The applied fertilizer mixtures had a great effect on changes in the N total and SOC contents. The N total increase was 45.5% in NaX–Ver3%L3% and 51% in NaX–Ver9%Leo6%, and the largest SOC increase (24.3%) was recorded in the NaX–Ver3%Leo3% treatment. The highest respiration activity was determined in NaX–Ver3%Leo3% and NaX–Ver9%Leo6%: 2.12 µg C-CO2 g−1 DM h−1 and 2.14 µg C-CO2 g−1 DM h−1, respectively. A significant correlation between pH values and the number of culturable microorganisms was found. The number of soil microorganisms depended on the type of fertilization used. The best stimulation of the number of culturable soil microorganisms was found in treatments with the addition of 3% of L or Leo in combination with NaX–Ver. The percentage increases in the number of the analyzed culturable microorganisms after the application of leonardite-based fertilization in combination with the zeolite–vermiculite composite were, on average: bacteria, 1096%; mold fungi, 1529%; actinomycetes, 1477%; ammonifiers, 910%

    Biochar changes in soil based on quantitative and qualitative humus compounds parameters

    No full text
    Due to the indisputable significance of humus in many biochemical processes as well as its increasing deficit particularly in light soils, alternative sources of substrates for the reproduction of this constituent should be sought. The aim of this study was to evaluate the effect of the addition of wheat straw and wheat straw biochar (in four rates) on quantitative and qualitative humus parameters. The following properties were determined in soil: pH, organic carbon, total nitrogen, humic and fulvic acids, carbon in the extract, non-hydrolysing carbon and spectrophotometric indexes for solution of humic acids including A2/6, A2/4, A4/6. After applying 1% and 2% additions of biochar to the soil, the Corg soil content significantly increased compared to the same doses of thermally unconverted straw. After 254 days of incubation, the addition of biochar to soil at higher doses, decreased the share of humic acid carbon (CHA, CFA) in the Corg content compared to treatments without organic additions and WS treatment. The nonhydrolysing carbon soil content was significantly increased by treatments with 1% and 2% additions of WSB, which indicates greater stabilisation of humus compounds and, at the same time, lower CO2 emission. Soil humic acids amended by treatment with biochar, especially at 1% and 2% doses, were characterised by lower A2/6 and A2/4 ratios. Recognition of changes that may occur in the quantitative and qualitative composition of soil humus after the application of biochar may in the future be helpful information for determining appropriate biochar dose

    FACTORS INFLUENCING COMPOSTING POULTRY WASTE

    No full text
    Organic recycling of waste, taking into account sanitary safety, should be a fundamental method for recovering the nutrients present in the waste for plants and organic matter. It also refers to by-products of animal origin, which are not intended for consumption by humans. In the present research , composting of hydrated poultry slaughterhouse waste with maize straw was carried out. A combination with fodder yeast and post-cellulose lime was also introduced, which modified chemical and physico-chemical properties of the mixtures. The experiment was carried out by recording the biomass temperature for 110 days in 1.2×1.0×0.8 m reactors with perforated bottoms enabling active aeration. The following parameters were taken into consideration in the composted material: carbon, nitrogen, sulfur, respiratory activity, microorganisms, fractions of compost obtained after washing on sieves. Small amounts of fodder yeast favoured the development of microorganisms and caused a sanitary risk in the final product. At the initial stage, the temperature of raw compost in that object was several degrees lower than in the case of the composted mass without yeast addition. The addition of post-cellulose lime at ratios 6.5:1:6.5 (maize straw: poultry slaughterhouse waste: post-cellulose lime) caused a change in the time of microbiological activity, and led to its inhibition in the final process. In comparison to objects with poultry waste, the highest degree of hygienization was found in the compost with post-cellulose lime (with pH close to neutral). By adjusting the ratios of substrates we can influence the microbiological activity, but the amounts of individual substrates should be determined taking into account the quality of the obtained compost

    Restoration of soils contaminated with PAHs by the mixture of zeolite composites mixed with exogenous organic matter and mineral salts

    No full text
    Abstract The major cause of soil degradation (contamination, erosion, compaction) is closely linked to agriculture, i.e., unsustainable agriculture practices, which are reflected in the depletion of the soil organic carbon pool, loss in soil biodiversity, and reduction of C sink capacity in soils. Therefore, the agricultural practice of applying carbon-rich materials into the soil is an attractive solution for climate change mitigation and soil ecosystem sustainability. The paper aimed to evaluate the effectiveness of the addition of organic-mineral mixtures to the mineral salts (NPK), including the exogenous organic matter (lignite) mixed with zeolite-carbon (NaX-C) or zeolite-vermiculite (NaX-Ver) composites in the restoration of soils contaminated with PAHs. The addition of zeolite composites to fertilizer resulted in a significant reduction in soil PAH levels and a corresponding reduction in plant tissue content, without compromising yields, compared to the control and separate application of NPK. A Significant correlation between PAHs and pHH2O, pHKCl, EC and dehydrogenase activity (DhA) was found in soils. The addition of zeolite composites with lignite significantly reduced the content of PAHs in straws, especially following the application of NaX-C. However, in the case of grains, the highest percentage reduction in comparison to NPK was observed for the highest dose of NaX-Ver
    corecore