38 research outputs found

    Purification of phage display-modified bacteriophage T4 by affinity chromatography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by <it>in vivo </it>phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system.</p> <p>Results</p> <p>Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 10<sup>2</sup>-10<sup>5 </sup>times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml.</p> <p>Conclusions</p> <p>Affinity tags can be successfully incorporated into the T4 phage capsid by the <it>in vivo </it>phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be considered as a new phage purification method, appropriate for further investigations and development.</p

    Natural and induced antibodies against phages in humans: induction kinetics and immunogenicity for structural proteins of PB1-related phages

    Get PDF
    Background: Bacteriophages may induce specific antibodies after natural exposure to phages or after phage therapy. As such, phage-specific antibodies might impact phage bioavailability in vivo, although limited non-neutralizing or insignificant effects have also been reported. Materials and Methods: Here, we report antibody induction against PB1-related phages (Pseudomonas viruses LMA2, F8, DP1) in mice over an 80-day period, for a healthy population of humans, and in patients undergoing phage therapy (oral and/or topical treatment). Results: All phages effectively induced specific immunoglobulin M and immunoglobulin G in mice. Phage-specific antibodies were observed in humans, whereas recombinant virion proteins (PB1 gp22, gp29) did not induce phage-neutralizing antibodies, either in mice or in humans. The healthy human population was differentiated for frequency of phage-neutralizing antibodies. Conclusions: These data can hold key considerations for phage therapy cocktail design, as highly similar phages can still be highly complementary in cases where specific immune response hinders therapeutic use of phages.This work was supported by the National Science Centre in Poland grant no. UMO-2012/05/E/NZ6/03314 (granted to K.D.). S.M.S. acknowledges the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 713640.info:eu-repo/semantics/publishedVersio

    Immunogenic epitope scanning in bacteriolytic enzymes Pal and Cpl-1 and engineering Pal to escape antibody responses

    Get PDF
    Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response in vivo. In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity. One new variant of Pal (257-259 MKS → TFG) demonstrated decreased immunogenicity while a similar mutant (257-259 MKS → TFK) demonstrated increased immunogenicity. A third variant (280-282 DKP → GGA) demonstrated significantly increased antibacterial activity and it was not cross-neutralized by antibodies induced by the wild-type enzyme. We propose this variant as a new engineered endolysin with increased antibacterial activity that is capable of escaping cross-neutralization by antibodies induced by wild-type Pal. We show that efficient antibacterial enzymes that avoid cross-neutralization by IgG can be developed by epitope scanning, in silico design, and substitutions of identified key amino acids with a high rate of success. Importantly, this universal approach can be applied to many proteins beyond endolysins and has the potential for design of numerous biological drugs

    Immunogenicity of Endolysin PlyC

    No full text
    Endolysins are bacteriolytic enzymes derived from bacteriophages. They represent an alternative to antibiotics, since they are not susceptible to conventional antimicrobial resistance mechanisms. Since non-human proteins are efficient inducers of specific immune responses, including the IgG response or the development of an allergic response mediated by IgE, we evaluated the general immunogenicity of the highly active antibacterial enzyme, PlyC, in a human population and in a mouse model. The study includes the identification of molecular epitopes of PlyC. The overall assessment of potential hypersensitivity to this protein and PlyC-specific IgE testing was also conducted in mice. PlyC induced efficient IgG production in mice, and the molecular analysis revealed that PlyC-specific IgG interacted with four immunogenic regions identified within the PlyCA subunit. In humans, approximately 10% of the population demonstrated IgG reactivity to the PlyCB subunit only, which is attributed to cross-reactions since this was a na&iuml;ve serum. Of note, in spite of being immunogenic, PlyC induced a normal immune response, without hypersensitivity, since both the animals challenged with PlyC and in the human population PlyC-specific IgE was not detected

    T4 Phage Tail Adhesin Gp12 Counteracts LPS-induced Inflammation In Vivo

    Get PDF
    Bacteriophages that infect Gram-negative bacteria often bind to the bacterial surface by interaction of specific proteins with lipopolysaccharide (LPS). Short tail fiber proteins (tail adhesin, gp12) mediate adsorption of T4-like bacteriophages to Escherichia coli, binding surface proteins or LPS. Produced as a recombined protein, gp12 retains its ability to bind LPS. Since LPS is able to exert a major impact on the immune response in animals and in humans, we have tested LPS-binding phage protein gp12 as a potential modulator of the LPS-induced immune response. We have produced tail adhesin gp12 in a bacterial expression system and confirmed its ability to form trimers and to bind lipopolysaccharide in vitro by dynamic light scattering. This product had no negative effect on mammalian cell proliferation in vitro. Further, no harmful effects of this protein were observed in mice. Thus, gp12 was used in combination with LPS in a murine model, and it decreased the inflammatory response to LPS in vivo, as assessed by serum levels of cytokines IL-1 alpha and IL-6 and by histopathological analysis of spleen, liver, kidney and lungs. Thus, in future studies gp12 may be considered as a potential tool for modulation and specifically for counteracting LPS-related physiological effects in vivo

    Recombinant expression and purification of T4 phage Hoc, Soc, gp23, gp24 proteins in native conformations with stability studies.

    Get PDF
    Understanding the biological activity of bacteriophage particles is essential for rational design of bacteriophages with defined pharmacokinetic parameters and to identify the mechanisms of immunobiological activities demonstrated for some bacteriophages. This work requires highly purified preparations of the individual phage structural proteins, possessing native conformation that is essential for their reactivity, and free of incompatible biologically active substances such as bacterial lipopolysaccharide (LPS). In this study we describe expression in E. coli and purification of four proteins forming the surface of the bacteriophage T4 head: gp23, gp24, gphoc and gpsoc. We optimized protein expression using a set of chaperones for effective production of soluble proteins in their native conformations. The assistance of chaperones was critical for production of soluble gp23 (chaperone gp31 of T4 phage) and of gpsoc (chaperone TF of E. coli). Phage head proteins were purified in native conditions by affinity chromatography and size-exclusion chromatography. Two-step LPS removal allowed immunological purity grade with the average endotoxin activity less than 1 unit per ml of protein preparation. The secondary structure and stability of the proteins were studied using circular dichroism (CD) spectrometry, which confirmed that highly purified proteins preserve their native conformations. In increasing concentration of a denaturant (guanidine hydrochloride), protein stability was proved to increase as follows: gpsoc, gp23, gphoc. The denaturation profile of gp24 protein showed independent domain unfolding with the most stable larger domain. The native purified recombinant phage proteins obtained in this work were shown to be suitable for immunological experiments in vivo and in vitro

    Oral Application of T4 Phage Induces Weak Antibody Production in the Gut and in the Blood

    No full text
    A specific humoral response to bacteriophages may follow phage application for medical purposes, and it may further determine the success or failure of the approach itself. We present a long-term study of antibody induction in mice by T4 phage applied per os: 100 days of phage treatment followed by 112 days without the phage, and subsequent second application of phage up to day 240. Serum and gut antibodies (IgM, IgG, secretory IgA) were analyzed in relation to microbiological status of the animals. T4 phage applied orally induced anti-phage antibodies when the exposure was long enough (IgG day 36, IgA day 79); the effect was related to high dosage. Termination of phage treatment resulted in a decrease of IgA again to insignificant levels. Second administration of phage induces secretory IgA sooner than that induced by the first administrations. Increased IgA level antagonized gut transit of active phage. Phage resistant E. coli dominated gut flora very late, on day 92. Thus, the immunological response emerges as a major factor determining phage survival in the gut. Phage proteins Hoc and gp12 were identified as highly immunogenic. A low response to exemplary foreign antigens (from Ebola virus) presented on Hoc was observed, which suggests that phage platforms can be used in oral vaccine design

    Safety Studies of Pneumococcal Endolysins Cpl-1 and Pal

    No full text
    Bacteriophage-derived endolysins have gained increasing attention as potent antimicrobial agents and numerous publications document the in vivo efficacy of these enzymes in various rodent models. However, little has been documented about their safety and toxicity profiles. Here, we present preclinical safety and toxicity data for two pneumococcal endolysins, Pal and Cpl-1. Microarray, and gene profiling was performed on human macrophages and pharyngeal cells exposed to 0.5 &#181;M of each endolysin for six hours and no change in gene expression was noted. Likewise, in mice injected with 15 mg/kg of each endolysin, no physical or behavioral changes were noted, pro-inflammatory cytokine levels remained constant, and there were no significant changes in the fecal microbiome. Neither endolysin caused complement activation via the classic pathway, the alternative pathway, or the mannose-binding lectin pathway. In cellular response assays, IgG levels in mice exposed to Pal or Cpl-1 gradually increased for the first 30 days post exposure, but IgE levels never rose above baseline, suggesting that hypersensitivity or allergic reaction is unlikely. Collectively, the safety and toxicity profiles of Pal and Cpl-1 support further preclinical studies

    T4 phage and its head surface proteins do not stimulate inflammatory mediator production.

    Get PDF
    Viruses are potent activators of the signal pathways leading to increased cytokine or ROS production. The effects exerted on the immune system are usually mediated by viral proteins. Complementary to the progress in phage therapy practice, advancement of knowledge about the influence of bacteriophages on mammalian immunity is necessary. Particularly, the potential ability of phage proteins to act like other viral stimulators of the immune system may have strong practical implications for the safety and efficacy of bacteriophage therapy. Here we present studies on the effect of T4 phage and its head proteins on production of inflammatory mediators and inflammation-related factors: IL-1α, IL-1β, IL-2, IL-6, IL-10, IL-12 p40/p70, IFN-γ, TNF-α, MCP-1, MIG, RANTES, GCSF, GM-CSF and reactive oxygen species (ROS). Plasma cytokine profiles in an in vivo mouse model and in human blood cells treated with gp23*, gp24*, Hoc and Soc were evaluated by cytokine antibody arrays. Cytokine production and expression of CD40, CD80, CD86 and MHC class II molecules were also investigated in mouse bone marrow-derived dendritic cells treated with whole T4 phage particle or the same capsid proteins. The influence of T4 and gp23*, gp24*, Hoc and Soc on reactive oxygen species generation was examined in blood cells using luminol-dependent chemiluminescence assay. In all performed assays, the T4 bacteriophage and its capsid proteins gp23*, gp24*, Hoc and Soc did not affect production of inflammatory-related cytokines or ROS. These observations are of importance for any medical or veterinary application of bacteriophages
    corecore