1,441 research outputs found

    Whispering Gallery States of Antihydrogen

    Full text link
    We study theoretically interference of the long-living quasistationary quantum states of antihydrogen atoms, localized near a concave material surface. Such states are an antimatter analog of the whispering gallery states of neutrons and matter atoms, and similar to the whispering gallery modes of sound and electro-magnetic waves. Quantum states of antihydrogen are formed by the combined effect of quantum reflection from van der Waals/Casimir-Polder (vdW/CP) potential of the surface and the centrifugal potential. We point out a method for precision studies of quantum reflection of antiatoms from vdW/CP potential; this method uses interference of the whispering gallery states of antihydrogen.Comment: 13 pages 7 figure

    Statistical mechanics of spatial evolutionary games

    Full text link
    We discuss the long-run behavior of stochastic dynamics of many interacting players in spatial evolutionary games. In particular, we investigate the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We use concepts and techniques of statistical mechanics to study game-theoretic models. In order to obtain results in the case of the so-called potential games, we analyze the thermodynamic limit of the appropriate models of interacting particles.Comment: 19 pages, to appear in J. Phys.

    Unusual formations of the free electromagnetic field in vacuum

    Full text link
    It is shown that there are exact solutions of the free Maxwell equations (FME) in vacuum allowing an existence of stable spherical formations of the free magnetic field and ring-like formations of the free electric field. It is detected that a form of these spheres and rings does not change with time in vacuum. It is shown that these convergent solutions are the result of an interference of some divergent solutions of FME. One can surmise that these electromagnetic formations correspond to Kapitsa's hypothesis about interference origin and a structure of fireball.Comment: Revtex-file, without figures. To get lournal-pdf-copy with figures contact with [email protected]

    Radius dependent shift of surface plasmon frequency in large metallic nanospheres: theory and experiment

    Full text link
    Theoretical description of oscillations of electron liquid in large metallic nanospheres (with radius of few tens nm) is formulated within random-phase-approximation semiclassical scheme. Spectrum of plasmons is determined including both surface and volume type excitations. It is demonstrated that only surface plasmons of dipole type can be excited by homogeneous dynamical electric field. The Lorentz friction due to irradiation of electro-magnetic wave by plasmon oscillations is analyzed with respect to the sphere dimension. The resulting shift of resonance frequency turns out to be strongly sensitive to the sphere radius. The form of e-m response of the system of metallic nanospheres embedded in the dielectric medium is found. The theoretical predictions are verified by a measurement of extinction of light due to plasmon excitations in nanosphere colloidal water solutions, for Au and Ag metallic components with radius from 10 to 75 nm. Theoretical predictions and experiments clearly agree in the positions of surface plasmon resonances and in an emergence of the first volume plasmon resonance in the e-m response of the system for limiting big nanosphere radii, when dipole approximation is not exact

    Exact Self-consistent Particle-like Solutions to the Equations of Nonlinear Scalar Electrodynamics in General Relativity

    Get PDF
    Exact self-consistent particle-like solutions with spherical and/or cylindrical symmetry to the equations governing the interacting system of scalar, electromagnetic and gravitational fields have been obtained. As a particular case it is shown that the equations of motion admit a special kind of solutions with sharp boundary known as droplets. For these solutions, the physical fields vanish and the space-time is flat outside of the critical sphere or cylinder. Therefore, the mass and the electric charge of these configurations are zero.Comment: 17 pages, Submitted to the International Journal of Theoretical Physic
    corecore