27 research outputs found

    A high order feedback net (HOFNET) with variable non-linearity

    Get PDF
    Most neural networks proposed for pattern recognition sample the incoming image at one instant and then analyse it. This means that the data to be analysed is limited to that containing the noise present at one instant. Time independent noise is therefore, captured but only one sample of time dependent noise is included in the analysis. If however, the incoming image is sampled at several instants, or continuously, then in the subsequent analysis the time dependent noise can be averaged out. This, of course, assumes that sufficient samples can be taken before the object being imaged, has moved an appreciable distance in the field of view. High speed sampling requires parallel image input and is most conveniently carried out by optoelectronic neural network image analysis systems. Optical technology is particularly good at performing certain operations, such as Fourier Transforms, correlations and convolutions while others such as subtraction are difficult. So for an optical net it is best to choose an architecture based on convenient operations such as the high order neural networks

    Opto-electronic high order feedback neural network

    Get PDF
    A novel neural network design, in which nonlinearities are created by feedback, is described. It is called the HOFNET. The design is suitable for optical implementation because it is tolerant of the limited dynamic ranges present in optical systems. An optical system with electronic feedback was constructed and its operation is described

    Correlating matched-filter model for analysis and optimisation of neural networks

    Get PDF
    A new formalism is described for modelling neural networks by means of which a clear physical understanding of the network behaviour can be gained. In essence, the neural net is represented by an equivalent network of matched filters which is then analysed by standard correlation techniques. The procedure is demonstrated on the synchronous Little-Hopfield network. It is shown how the ability of this network to discriminate between stored binary, bipolar codes is optimised if the stored codes are chosen to be orthogonal. However, such a choice will not often be possible and so a new neural network architecture is proposed which enables the same discrimination to be obtained for arbitrary stored codes. The most efficient convergence of the synchronous Little-Hopfield net is obtained when the neurons are connected to themselves with a weight equal to the number of stored codes. The processing gain is presented for this case. The paper goes on to show how this modelling technique can be extended to analyse the behaviour of both hard and soft neural threshold responses and a novel time-dependent threshold response is described

    The self-focusing Fresnel-Dammann grating and the Fresnel binary CGH for compact 2-D light spot array generation

    Get PDF
    The authors have described the design and demonstrated the performance of two types of lensless array generator. The Self-focusing Fresnel-Dammann grating (SFD), and the Fresnel hologram. The SFD is based on a conventional Dammann grating, but obviates the need for extraneous Fourier transform lenses, by combining the grating with a Fresnel zone plate, in an exclusive-OR fashion. No alignment is required and no bulky or dispersive refractive elements are used. The Fresnel hologram can be designed for high fanout, but the design must take into account the phases of the light spots in the image array. The authors have demonstrated this for an 8times8 fanout element, where a set of random phases in the output gave rise to a satisfactory performance, whilst another set of phases gave an undesired, although interesting, result. The authors have also demonstrated a 30deg slanted axis, random phase design, generating a two dimensional array of 8times8 beams, used in reflection, and operating in a multiple reflection, planar-optic configuratio

    Improved spectral characteristics of a single-mode semiconductor laser using a fibre grating and a reduced laser diode length

    No full text
    Use of a reduced laser diode length with a fibre Bragg reflector leads to decreased mode-hopping and a factor of 3 improvement in temperature stability of the lasing wavelength over Δ T=22°C. Single frequency output power of 1.7 mW in the fibre with 45 dB side mode suppression was obtained

    Opto-electronic high order feedback neural network

    Full text link

    Towards an optical ether (optically routed broadband network)

    No full text

    Application of free-market principles to telecoms resource allocation

    No full text
    corecore